[1] |
赵晓, 王铮, 黄程侃, 等. 基于改进A*算法的移动机器人路径规划[J]. 机器人, 2018, 40(6):903-910.
doi: 10.13973/j.cnki.robot.170591
|
|
[ Zhao X A, Wang Z, Huang C K, et al. Mobile robot path planning based on an improved A* algorithm[J]. Robot, 2018, 40(6):903-910. ] DOI: 10.13973/j.cnki.robot.170591
|
[2] |
唐志荣, 冀杰, 吴明阳, 等. 基于改进人工势场法的车辆路径规划与跟踪[J]. 西南大学学报(自然科学版), 2018, 40(6):174-182.
|
|
[ Tang Z R, Ji J, Wu M Y, et al. Vehicle path planning and tracking based on improved artificial potential field method[J]. Journal of Southwest University (Natural Science), 2018, 40(6):174-182. ] DOI: 10.13718/j.cnki.xdzk.2018.06.025
|
[3] |
谭建豪, 肖友伦, 刘力铭, 等. 改进PRM算法的无人机航迹规划[J]. 传感器与微系统, 2020, 39(1):38-41.
|
|
[ Tan J H, Xiao Y L, Liu L M, et al. Improved PRM algorithm for uav flight path planning[J]. Sensors and Microsystems, 2020, 39(1):38-41. ] DOI: 10.13873/J.1000-9787(2020)01-0038-04
|
[4] |
Lavalle S M, Rapidly-exploring random trees: A new tool for path planning[D]. Ames: Iowa State University, 1998.
|
[5] |
Karaman S, Frazzoli E. Incremental sampling-based algorithms for optimal motion planning[J]. Robotics: Science and Systems, 2011, 6:267-274. DOI: 10.15607/RSS.2010.VI.034
|
[6] |
Klemm S, Oberländer J, Hermann A, et al. RRT -Connect: Faster, asymptotically optimal motion planning[C]// 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2015:1670-1677. DOI: 10.1109/ROBIO.2015.7419012
|
[7] |
Islam F, Nasir J, Malik U, et al. RRT -Smart: Rapid convergence implementation of RRT towards optimal solution[C]// 2012 IEEE International Conference on Mechatronics and Automation. IEEE, 2012:1651-1656. DOI: 10.1109/ICMA.2012.6284384
|
[8] |
Wu J F, Wang H L, Li N, et al. Path planning for solar-powered UAV in urban environment[J]. Neurocomputing, 2018, 275:2055-2065. DOI: 10.1016/j.neucom.2017.10.037
doi: 10.1016/j.neucom.2017.10.037
|
[9] |
Maiouak M, Taleb T. Dynamic maps for automated driving and UAV geofencing[C]//IEEE Wireless Communications. IEEE:54-59. DOI: 10.1109/MWC.2019.1800544
|
[10] |
Kuffner J J, LaValle S M. RRT-connect: An efficient approach to single-query path planning[C]// Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065). IEEE, 2000:995-1001. DOI: 10.1109/ROBOT.2000.844730
|
[11] |
Akgun B, Stilman M. Sampling heuristics for optimal motion planning in high dimensions[C]// 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2011:2640-2645. DOI: 10.1109/IROS.2011.6095077
|
[12] |
Urmson C, Simmons R. Approaches for heuristically biasing RRT growth[C]// Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No.03CH37453). IEEE, 2003:1178-1183. DOI: 10.1109/IROS.2003.1248805
|
[13] |
Gammell J D, Srinivasa S S, Barfoot T D. Informed RRT*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic[C]// 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2014:2997-3004. DOI: 10.1109/IROS.2014.6942976
|
[14] |
司徒华杰, 雷海波, 庄春刚. 动态环境下基于人工势场引导的RRT路径规划算法[J]. 计算机应用研究, 2021, 38(3):714-717,724.
|
|
[ Situ H J, Lei H B, Zhuang C G. Artificial potential field based RRT algorithm for path planning in dynamic environment[J]. Application Research of Computers, 2021, 38(3):714-717,724. ] DOI: 10.19734/jissn.1001-3695.2020.02.0044
|
[15] |
刘艳, 马劲松, 张永玉. 三维GIS中R树空间索引研究[J]. 测绘科学, 2010, 35(1):167-168.
|
|
[ Liu Y, Ma J S, Zhang Y Y. Studies on R-tree spatial index for 3D GIS[J]. Science of Surveying and Mapping, 2010, 35(1):167-168. ] DOI: 10.16251/j.cnki.1009-2307.2010.01.056
|
[16] |
龚俊, 朱庆, 张叶廷, 等. 顾及多细节层次的三维R树索引扩展方法[J]. 测绘学报, 2011, 40(2):249-255.
|
|
[ Gong J, Zhu Q, Zhang Y T, et al. An efficient 3D R-tree extension method concerned with levels of detail[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(2):249-255. ] DOI: CNKI:SUN:CHXB.0.2011-02-022
|
[17] |
于安斌, 梅文胜. 一种R树与格网结合的海量地铁隧道点云管理方法[J]. 武汉大学学报·信息科学版, 2019, 44(10):1553-1559.
|
|
[ Yu A B, Mei W S. An efficient management method for massive point cloud data of metro tunnel based on R-tree and grid[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10):1553-1559. ] DOI: 10.13203/j.whugis20170419
|
[18] |
Wu X J, Xu L, Zhen R, et al. Biased sampling potentially guided intelligent bidirectional RRT algorithm for UAV path planning in 3D environment[J]. Mathematical Problems in Engineering, 2019, 2019:1-12. DOI: 10.1155/2019/5157403
|
[19] |
Yu M, Luo J J, Wang M M, et al. Spline-RRT: Coordinated motion planning of dual-arm space robot[J]. IFAC-PapersOnLine, 2020, 53(2):9820-9825. DOI: 10.1016/j.ifacol.2020.12.2685
doi: 10.1016/j.ifacol.2020.12.2685
|
[20] |
Wen N F, Zhang R B, Liu G Q, et al. Online planning low-cost paths for unmanned surface vehicles based on the artificial vector field and environmental heuristics[J]. International Journal of Advanced Robotic Systems, 2020, 17(6):172988142096907. DOI: 10.1177/1729881420969076
|
[21] |
刘奥博, 袁杰. 目标偏置双向RRT*算法的机器人路径规划[J/OL]. 计算机工程与应用:1-8[2021-09-07].
|
|
[ Liu A B, Yuan J. Robot path planning with target bias bidirectional RRT* algorithm[J/OL]. Computer Engineering and Applications: 1-8[2021-09-07].]
|
[22] |
王嘉琦. 基于改进RRT*算法的无人机避障路径规划[D]. 南昌:南昌航空大学, 2019.
|
|
[ Wang J Q. Obstacle avoidance path planning for UAV based on improved RRT* algorithm[D]. Nanchang: Nanchang Hangkong University, 2019.]
|