地球信息科学学报 ›› 2022, Vol. 24 ›› Issue (9): 1676-1687.doi: 10.12082/dqxxkx.2022.210455
杨洋1(), 邵哲平1,2, 赵强1,2, 潘家财1,2, 胡雨4, 梅强1,2,3,*(
)
收稿日期:
2021-08-04
修回日期:
2021-12-14
出版日期:
2022-09-25
发布日期:
2022-11-25
通讯作者:
*梅 强(1987— ),男,安徽宿州人,助教,主要从事海事地理信息分析研究等。E-mail: meiqiang@jmu.edu.cn作者简介:
杨 洋(1994— ),女,四川眉山人,硕士生,主要从事海事地理信息研究。E-mail: 1042280675@qq.com
基金资助:
YANG Yang1(), SHAO Zheping1,2, ZHAO Qiang1,2, PAN Jiacai1,2, HU Yu4, MEI Qiang1,2,3,*(
)
Received:
2021-08-04
Revised:
2021-12-14
Online:
2022-09-25
Published:
2022-11-25
Contact:
MEI Qiang
Supported by:
摘要:
利用海上交通事故空间分布特征进行安全分析是海上交通安全管理的重要组成部分。本文使用厦门港2008—2020年的海上交通事故数据,经过事故数据空间分布特征提取、分析及预测等流程,最终得到厦门水域海上交通事故潜在危险区域。本文首先使用原始事故数据在GIS软件中进行空间定位,形成事故点的可视化空间分布图,然后使用核密度分析法鉴别海上交通事故多发区域,再利用空间自相关分析法,得到该区域事故空间的分布特征和具体的聚集点,最后使用该分布特征、对目标水域数据进行标准化网格切分,并利用机器学习算法对潜在事故风险区域进行预测。本文在核密度分析结果中发现:就事故频度而言,厦门湾和西海域交通事故频度较高。在空间自相关分析的结果中表明:就空间分布特征而言,厦门港的空间分布出现聚集特征且为空间正相关模式,且就事故具体的空间聚集点而言,厦门湾和西海域仍是事故高发的中心区域。而最后的厦门湾及周边水域风险预测模型显示:潜在事故风险区域多位于沿海和河口交汇区域。本文研究结果表明在基于地理空间数据分布特征提取和网格化分析的基础上,结合机器学习方法(随机森林),对于海上交通事故的预测具有良好的效果。
杨洋, 邵哲平, 赵强, 潘家财, 胡雨, 梅强. 基于厦门港的海上交通事故地理空间分布及风险预测研究[J]. 地球信息科学学报, 2022, 24(9): 1676-1687.DOI:10.12082/dqxxkx.2022.210455
YANG Yang, SHAO Zheping, ZHAO Qiang, PAN Jiacai, HU Yu, MEI Qiang. Geographical Spatial Distribution and Risk Prediction of Maritime Traffic Accidents in Port of Xiamen[J]. Journal of Geo-information Science, 2022, 24(9): 1676-1687.DOI:10.12082/dqxxkx.2022.210455
[1] | 王焕新, 刘正江. 基于N-K模型的海上交通安全风险因素耦合分析[J]. 安全与环境学报, 2021, 21(1):56-61. |
[ Wang H X, Liu Z J. Coupling analysis of the risk factors for the maritime transportation safety based on the N-K model[J]. Journal of Safety and Environment, 2021, 21(1):56-61. ] DOI: 10.13637/j.issn.1009-6094.2019.1683
doi: 10.13637/j.issn.1009-6094.2019.1683 |
|
[2] | 沈贤达, 张洁, 郭辰, 等. 基于风险分析的海上风机基础安全性评价研究[J]. 水利学报, 2015, 46(S1):326-330. |
[ Shen X D, Zhang J, Guo C, et al. Risk-based safety evaluation of foundations of offshore wind turbines[J]. Journal of Hydraulic Engineering, 2015, 46(S1):326-330. ] DOI: 10.13243/j.cnki.slxb.2015.S1.059
doi: 10.13243/j.cnki.slxb.2015.S1.059 |
|
[3] | 郑义彬, 杨慧慧, 倪荣. 基于系统动力学方法的江汉运河通航风险管理策略模拟及其效果分析[J]. 水运管理, 2021, 43(1):13-16,27. |
[ Deng Y B, Yang H H, NI R. Simulation of navigation risk management strategy of Jianghan Canal based on system dynamics method and its effect analysis[J]. Shipping Management, 2021, 43(1):13-16,27. ] DOI: 10.13340/j.jsm.2021.01.004
doi: 10.13340/j.jsm.2021.01.004 |
|
[4] | 张骞予, 杨家其. 基于ARERAC评价模型的水上交通安全风险源评估[J]. 水运管理, 2020, 42(7):35-40. |
[ Zhang Q Y, Yang J Q. Assessment of water traffic safety risk sources based on ARERAC evaluation model[J]. Shipping Management, 2020, 42(7):35-40. ] DOI: 10.13340/j.jsm.2020.07.011
doi: 10.13340/j.jsm.2020.07.011 |
|
[5] | 鲁峰, 李伟, 于仁海, 等. 可拓云评价模型在航道通航环境安全评价中的应用[J]. 天津航海, 2021(1):1-6. |
[ Lu F, Li W, Yu R H, et al. Application of topo cloud evaluation model in safety evaluation of navigational environment of waterways[J]. TianJin HangHai, 2021(1):1-6. ] | |
[6] | 虞盈, 兰培真. 基于灰色马尔科夫模型的福建辖区船舶交通事故预测[J]. 中国航海, 2017, 40(3):69-72. |
[ Yu Y, Lan P Z. Vessel traffic accident prediction of Fujian area based on grey markov model[J]. Navigation of China, 2017, 40(3):69-72. ] | |
[7] | 汪强. 基于组合模型的海上交通事故预测研究[J]. 钦州学院学报, 2019, 34(5):10-14. |
[ Wang Q. A study of maritime traffic accidents prediction based on combination model[J]. Journal of Qinzhou University, 2019, 34(5):10-14. ] | |
[8] | 徐东星, 尹勇, 张秀凤, 等. 基于改进三参数灰色模型的海上交通事故预测[J]. 中国航海, 2020, 43(1):12-17. |
[ Xu D X, Yin Y, ZHANG X F, et al. Improved three-parameter grey model for prediction of marine traffic accidents[J]. Navigation of China, 2020, 43(1):12-17. ] | |
[9] | 王清斌, 王文亮, 赵睿. 基于改进XGBoost算法的船舶事故风险与类型预测[J/OL]. 安全与环境学报,1-9[2021-11-16]. |
[ Wang Q B, Wang W L, Zhao R. Prediction of ship accident risk and type based on improved XGBoost[J/OL]. Journal of safety and environment, 1-9[2021-11-16. ] DOI: 10.13637/j.issn.1009-6094.2021.1040
doi: 10.13637/j.issn.1009-6094.2021.1040 |
|
[10] |
Zhuang W X, Guo G P. Research and countermeasures on LNG ship port area navigation risk assessment based on Fuzzy comprehensive evaluation method[J]. IOP Conference Series: Earth and Environmental Science, 2021, 809,1. DOI: 10.1088/1755-1315/809/1/012008
doi: 10.1088/1755-1315/809/1/012008 |
[11] |
Ung S.T. Navigation risk estimation using a modified bayesian network modeling-a case study in Taiwan[J]. Reliability Engineering and System Safety, 2021,213. DOI: https://doi.org/10.1016/j.ress.2021.107777
doi: https://doi.org/10.1016/j.ress.2021.107777 |
[12] |
Zhao L B, Fu X J. A novel index for real-time ship collision risk assessment based on velocity obstacle considering dimension data from AIS[J]. Ocean Engineering, 2021,240. DOI: https://doi.org/10.1016/j.oceaneng.2021.109913
doi: https://doi.org/10.1016/j.oceaneng.2021.109913 |
[13] |
Dinis D, Teixeira A P, Guedes Soares C. Probabilistic approach for characterising the static risk of ships using bayesian networks[J]. Reliability Engineering and System Safety, 2020,203. DOI: https://doi.org/10.1016/j.ress.2020.107073
doi: https://doi.org/10.1016/j.ress.2020.107073 |
[14] |
Ruan Q S, Luo F, et al. Design scheme of ship risk prediction model from the perspective of artificial intelligence[J]. Journal of Physics: Conference Series, 2021, 1982(1). DOI: 10.1088/1742-6596/1982/1/012062
doi: 10.1088/1742-6596/1982/1/012062 |
[15] |
Tiang F F, Yuen K K R, Lee E W M. Analysis of motorcycle accidents using association rule mining-based framework with parameter optimization and GIS technology[J]. Journal of Safety Research, 2020, 75:292-309. DOI: https://doi.org/10.1016/j.jsr.2020.09.004
doi: https://doi.org/10.1016/j.jsr.2020.09.004 |
[16] |
Yafei L, Chen L, Alanin L. The analysis of spatial pattern and hotspots of aviation accident and ranking the potential risk airports based on GIS platform[J]. Journal of Advanced Transportation, 2018,2018. DOI: https://doi.org/10.1155/2018/4027498
doi: https://doi.org/10.1155/2018/4027498 |
[17] |
Maher I S, Biswajeet P. Assessment of the effects of expressway geometric design features on the frequency of accident crash rates using high-resolution laser scanning data and GIS[J]. Geomatics, Natural Hazards and Risk, 2017, 8(2):733-747. DOI: https://doi.org/10.1080/19475705.2016.1265012
doi: https://doi.org/10.1080/19475705.2016.1265012 |
[18] |
GHOLAM A S, AFSHIN F, MOHAMMAD S B. GIS-based spatial analysis of urban traffic accidents: Case study in Mashhad, Iran[J]. Journal of Traffic and Transportation Engineering(English Edition), 2017, 4(3):290-299. DOI: https://doi.org/10.1016/j.jtte.2017.05.005
doi: https://doi.org/10.1016/j.jtte.2017.05.005 |
[19] |
Mohammad A A, Reza S D, et al. Applying GIS to identify the spatial and temporal patterns of road accidents using spatial statistics (case study: Ilam Province, Iran)[J]. Transportation Research Procedia, 2017, 25:2126-2138. DOI: https://doi.org/10.1016/j.trpro.2017.05.409
doi: https://doi.org/10.1016/j.trpro.2017.05.409 |
[20] |
Murat S C, Ozan A. A GIS approach to evaluate infrastructure variables influencing the occurrence of traffic accidents in urban roads[J]. International Journal of Environment and Geoinformatics, 2017, 4(1):17-24. DOI: 10.30897/ijegeo.306488
doi: 10.30897/ijegeo.306488 |
[21] | 阚小溪, 高悦尔, 杨春, 等. 路网形态对城市购物中心布局的影响—以福建厦门岛为例[J]. 地域研究与开发, 2021, 40(2):68-73. |
[ Kan X X, Gao Y E, Yang C, et al. Influence of road network form on layout of urban shopping center: A case study of Xiamen island in Fujian Province[J]. Arear Research and Development, 2021, 40(2):68-73. ] | |
[22] |
陆化普, 罗圣西, 李瑞敏. 基于GIS分析的深圳市道路交通事故空间分布特征研究[J]. 中国公路学报, 2019, 32(8):156-164.
doi: 10.19721/j.cnki.1001-7372.2019.08.014 |
[ Lu H P, Luo S X, Li R M. GIS-based spatial patterns analysis of urban road traffic crashes in ShenZhen[J]. China Journal of Highway and Transport, 2019, 32(8):156-164. ] DOI: 10.19721/j.cnki.1001-7372.2019.08.014
doi: 10.19721/j.cnki.1001-7372.2019.08.014 |
|
[23] |
邢晓语, 杨秀春, 徐斌, 等. 基于随机森林算法的草原地上生物量遥感估算方法研究[J]. 地球信息科学学报, 2021, 23(7):1312-1324.
doi: 10.12082/dqxxkx.2021.200605 |
[ Xing X Y, Yang X C, Xu B, et al. Remote sensing estimation of grassland aboveground biomass based on random forest[J]. Journal of Geo-information Science, 2021, 23(7):1312-1324. ] DOI: 10.12082/dqxxkx.2021.200605
doi: 10.12082/dqxxkx.2021.200605 |
|
[24] |
方秀琴, 郭晓萌, 袁玲, 等. 随机森林算法在全球干旱评估中的应用[J]. 地球信息科学学报, 2021, 23(6):1040-1049.
doi: 10.12082/dqxxkx.2021.200474 |
[ Fang X Q, Guo X M, Yuan L, et al. Application of random forest algorithm in global drought assessment[J]. Journal of Geo-information Science, 2021, 23(6):1040-1049. ] DOI: 10.12082/dqxxkx.2021.200474
doi: 10.12082/dqxxkx.2021.200474 |
|
[25] |
柳林, 刘文娟, 廖薇薇, 等. 基于随机森林和时空核密度方法的不同周期犯罪热点预测对比[J]. 地理科学进展, 2018, 37(6): 761-771.
doi: 10.18306/dlkxjz.2018.06.003 |
[ Liu L, Liu W J, Liao W W, et al. Comparison of random forest algorithm and space-time kernel density mapping for crime hotspot prediction[J]. Progress in Geography, 2018, 37(6):761-771. ] | |
[26] | 中华人民共和国福建海事局.[EB/OL]. http://www.fj.msa.gov.cn/ ,2021-08-04. |
[ Fujian Maritime Safety Administration of People's Republic of China.[EB/OL]. http://www.fj.msa.gov.cn/ , 2021-08-04. ] | |
[27] | 水上交通事故统计办法[J]. 中华人民共和国国务院公报. 2015(1):44-47. |
[Statistical Measure of Water Transport Accidents[J]. Gazette of the State Council of the People's Republic of China, 2015(1):44-47 ] | |
[28] | 李佳, 古腾飞, 金磊, 等. 兴趣点定位的餐饮业空间特征分析方法[J]. 导航定位学报, 2021, 9(2):54-61. |
[ Li J, Gu T F, Jin L, et al. Analysis method of spatial characteristics of catering industry based on location of point of interest[J]. Journal of Navigation and Positioning, 2021, 9(2):54-61. ] DOI: 10.16547/j.cnki.10-1096.20210209
doi: 10.16547/j.cnki.10-1096.20210209 |
|
[29] |
蒋海兵, 李业锦. 京津冀地区制造业空间格局演化及其驱动因素[J]. 地理科学进展, 2021, 40(5):721-735.
doi: 10.18306/dlkxjz.2021.05.001 |
[ Jiang H B, Li Y J. Change of spatial structure of manufacturing industry in the Beijing-Tianjin-Hebei region and its driving factors[J]. Progress in Geography, 2021, 40(5):721-735. ] | |
[30] | 上海海事大学.[ EB/OL]. https://www.shmtu.edu.cn/ ,2021-08-04. |
[Shanghai Maritime University.[EB/OL]. https://www.shmtu.edu.cn/ , 2021-08-04. ] | |
[31] |
Zhang B B, Wu S, Cheng S F, et al. Spatial characteristics and factor analysis of pollution emission from heavy-duty diesel trucks in the Beijing-Tianjin-Hebei region, China[J]. International Journal of Environmental Research and Public Health, 2019, 16:4973. DOI: 10.3390/ijerph16244973
doi: 10.3390/ijerph16244973 |
[1] | 林炫歆, 肖桂荣, 周侯伯. 顾及土地利用动态变化的滑坡易发性评估方法[J]. 地球信息科学学报, 2023, 25(5): 953-966. |
[2] | 张珂健, 黄诚, 张晓祥, 王加虎, 陈跃红, 杨涛. 利用改进的SCS水文预警模型提升山洪灾害风险应急制图的时效性——以长江经济带为例[J]. 地球信息科学学报, 2023, 25(3): 546-559. |
[3] | 吴子豪, 刘耀林, 冯向阳, 陈奕云, 闫庆武. 基于多尺度地理加权回归的土壤镉污染局部影响因子分析[J]. 地球信息科学学报, 2023, 25(3): 573-587. |
[4] | 巫磊, 吴文挺. GEE平台下结合滤波算法和植被物候特征的互花米草遥感提取最优时间窗口确定[J]. 地球信息科学学报, 2023, 25(3): 606-624. |
[5] | 秦肖伟, 程博, 杨志平, 李林, 董文, 张新, 杨树文, 靳宗义, 薛庆. 基于时序遥感影像的西南山区地块尺度作物类型识别[J]. 地球信息科学学报, 2023, 25(3): 654-668. |
[6] | 黄帅元, 董有福, 李海鹏. 黄土高原区SRTM1 DEM高程误差校正模型构建及对比分析[J]. 地球信息科学学报, 2023, 25(3): 669-681. |
[7] | 潘雨飘, 赵翔, 王静, 张亦清, 刘耀林. 基于SMOTE-RF算法的村庄发展类型识别方法研究[J]. 地球信息科学学报, 2023, 25(1): 163-176. |
[8] | 吴亚楠, 郭长恩, 于东平, 段爱民, 刘玉, 董士伟, 单东方, 吴耐明, 李西灿. 基于不确定性分析的遥感分类空间分层及评估方法[J]. 地球信息科学学报, 2022, 24(9): 1803-1816. |
[9] | 聂祥琴, 陈瀚阅, 牛铮, 张黎明, 刘炜, 邢世和, 范协裕, 李家国. 基于时序影像的农业活动因子提取与闽西耕地SOC数字制图[J]. 地球信息科学学报, 2022, 24(9): 1835-1852. |
[10] | 高位, 涂伟, 李明晓, 方碧宸, 陈栋胜, 黄正东, 贺彪. 基于影响因子动态更新的都市圈国土-人口协同模拟[J]. 地球信息科学学报, 2022, 24(8): 1502-1511. |
[11] | 裴泽华, 葛淼, 李浩, 何进伟, 王聪霞. 基于随机森林模型的中国中老年人群HDL-C环境影响因素研究[J]. 地球信息科学学报, 2022, 24(7): 1286-1300. |
[12] | 郭逸飞, 吴田军, 骆剑承, 石含宁, 郜丽静. 基于不确定性迭代优化的山地植被遥感制图[J]. 地球信息科学学报, 2022, 24(7): 1406-1419. |
[13] | 高雪梅, 杨续超, 陈柏儒, 林琳. 基于随机森林模型的环渤海地区人口空间化模拟[J]. 地球信息科学学报, 2022, 24(6): 1150-1162. |
[14] | 卢奕帆, 梁颖然, 卢思言, 肖钺, 何小钰, 林锦耀. 结合“珞珈一号”夜间灯光与城市功能分区的广州市碳排放空间分布模拟及其影响因素分析[J]. 地球信息科学学报, 2022, 24(6): 1176-1188. |
[15] | 于法川, 祝善友, 张桂欣, 朱佳恒, 张南, 徐永明. 复杂山区地形条件下ERA5再分析地表气温降尺度方法[J]. 地球信息科学学报, 2022, 24(4): 750-765. |
|