地球信息科学学报 ›› 2021, Vol. 23 ›› Issue (5): 903-917.doi: 10.12082/dqxxkx.2021.200266
施海霞1(), 韦玉春2,3,4, 徐晗泽宇2,3,4,*(
), 周爽2,3,4, 程琪2,3,4
收稿日期:
2020-05-26
修回日期:
2020-08-10
出版日期:
2021-05-25
发布日期:
2021-07-25
通讯作者:
*徐晗泽宇(1993— ),男,甘肃嘉峪关人,博士生,研究方向为遥感图像分析。E-mail:xuhanzeyu@njnu.edu.cn作者简介:
施海霞(1979— ),女,江苏南京人,高级工程师,主要研究方向为土地利用及地理信息应用研究。E-mail:178537186@qq.com
基金资助:
SHI Haixia1(), WEI Yuchun2,3,4, XU Hanzeyu2,3,4,*(
), ZHOU Shuang2,3,4, CHENG Qi2,3,4
Received:
2020-05-26
Revised:
2020-08-10
Online:
2021-05-25
Published:
2021-07-25
Contact:
XU Hanzeyu
Supported by:
摘要:
相对辐射校正是遥感变化检测中重要的预处理过程,伪不变地物(Pseudo-Invariant Features,PIF)是多时相影像中相对不变的地物,是相对辐射校正中的重要依据。针对高分遥感图像变化检测中相对辐射校正的要求,本文提出了一个自动提取和优化选择PIF的流程和方法:首先计算两期图像的亮度、光谱特征和空间特征的变化向量,然后对各变化向量的像元值从低到高进行排序,经多数投票后提取PIF,最后使用“迭代线性回归—去除异常值”方法选择获得最终PIF。以2016年11月27日和2017年7月18日的2期“北京二号”高空间分辨率多光谱影像为例,选择地物占比不同的两个实验区对流程和方法进行了验证,并与多元变化检测和迭代加权多元变化检测的PIF提取方法进行了比较。使用两期WorldView-2影像和Landsat-8 OLI影像对方法的适用性进行了验证。结果表明:① 2个实验区提取的PIF精度分别为98.74%和98.71%,PIF像元合理分布于未变化区域、包括了影像中主要的地物类型;② 使用本文方法提取的PIF建立的相对辐射校正模型具有显著的线性拟合效果(p<0.000 1);③ 本文方法考虑了图像亮度、光谱信息以及空间信息的差异,使用参数少,可操作性高;④ 与多元变化检测和迭代加权多元变化检测方法相比,本文方法提取的PIF更为合理,建立的辐射校正方程拟合效果更佳;⑤ 本文方法适用于具有相同波段设置的中、高空间分辨率光学遥感影像。
施海霞, 韦玉春, 徐晗泽宇, 周爽, 程琪. 高分遥感图像相对辐射校正中的伪不变地物自动提取和优化选择[J]. 地球信息科学学报, 2021, 23(5): 903-917.DOI:10.12082/dqxxkx.2021.200266
SHI Haixia, WEI Yuchun, XU Hanzeyu, ZHOU Shuang, CHENG Qi. Automatic Extraction and Optimal Selection of the Pseudo Invariant Features for the Relative Radiometric Normalization in High-Resolution Remote Sensing Imagery[J]. Journal of Geo-information Science, 2021, 23(5): 903-917.DOI:10.12082/dqxxkx.2021.200266
表2
基于PIF的各波段相对辐射校正方程(本文方法)
波段 | R1 | R2 | ||||||
---|---|---|---|---|---|---|---|---|
一元线性回归方程 | R2 | RMSE | 一元线性回归方程 | R2 | RMSE | |||
原始图像 | B1 | y=0.6978x+0.0685 | 0.4958 | 0.0131 | y=0.7654x+0.0530 | 0.5033 | 0.0119 | |
B2 | y=0.6133x+0.0774 | 0.4140 | 0.0163 | y=0.6533x+0.0670 | 0.3924 | 0.0162 | ||
B3 | y=0.6212x+0.0718 | 0.3818 | 0.0227 | y=0.6976x+0.0597 | 0.3334 | 0.0262 | ||
B4 | y=0.3412x+0.1846 | 0.1067 | 0.0419 | y=0.3629x+0.1941 | 0.1205 | 0.0398 | ||
PIF_initial | B1 | y=0.7740x+0.0499 | 0.8917 | 0.0066 | y=0.8233x+0.0377 | 0.8719 | 0.0065 | |
B2 | y=0.7542x+0.0487 | 0.8715 | 0.0079 | y=0.7685x+0.0419 | 0.8572 | 0.0077 | ||
B3 | y=0.7688x+0.0403 | 0.8378 | 0.0115 | y=0.8027x+0.0312 | 0.8194 | 0.0118 | ||
B4 | y=0.6207x+0.1148 | 0.3251 | 0.0370 | y=0.5447x+0.1404 | 0.2572 | 0.0369 | ||
PIF_select | B1 | y=0.7748x+0.0507 | 0.9540 | 0.0037 | y=0.8242x+0.0374 | 0.9562 | 0.0026 | |
B2 | y=0.7630x+0.0479 | 0.9624 | 0.0037 | y=0.7760x+0.0405 | 0.9529 | 0.0032 | ||
B3 | y=0.7724x+0.0415 | 0.9720 | 0.0041 | y=0.8073x+0.0304 | 0.9737 | 0.0032 | ||
B4 | y=0.7547x+0.0820 | 0.9267 | 0.0093 | y=0.6577x+0.1155 | 0.7884 | 0.0140 |
表3
基于PIF的各波段相对辐射校正方程(MAD和IR-MAD)
波段 | R1 | R2 | ||||||
---|---|---|---|---|---|---|---|---|
一元线性回归方程 | R2 | RMSE | 一元线性回归方程 | R2 | RMSE | |||
PIF_MAD | B1 | y=0.6823x+0.0682 | 0.6434 | 0.0090 | y=0.7945x+0.0460 | 0.6680 | 0.0084 | |
B2 | y=0.5894x+0.0769 | 0.5655 | 0.0108 | y=0.6883x+0.0582 | 0.6028 | 0.0106 | ||
B3 | y=0.6092x+0.0676 | 0.5554 | 0.0148 | y=0.7523x+0.0454 | 0.6073 | 0.0156 | ||
B4 | y=0.3837x+0.1764 | 0.1169 | 0.0427 | y=0.4517x+0.1786 | 0.1575 | 0.0404 | ||
PIF_IR-MAD | B1 | y=0.7700x+0.0570 | 0.6549 | 0.0085 | y=0.8699x+0.0373 | 0.6342 | 0.0082 | |
B2 | y=0.6665x+0.0693 | 0.5500 | 0.0109 | y=0.7440x+0.0542 | 0.5060 | 0.0119 | ||
B3 | y=0.6839x+0.06264 | 0.4901 | 0.0164 | y=0.8381x+0.0412 | 0.4656 | 0.0198 | ||
B4 | y=0.4750x+0.1638 | 0.1871 | 0.0376 | y=0.5272x+0.1701 | 0.1990 | 0.0381 |
表4
基于PIF的各波段相对辐射校正方程(方法适用性验证)
波段 | WorldView-2 | Landsat-8 OLI | |||||
---|---|---|---|---|---|---|---|
一元线性回归方程 | R2 | RMSE | 一元线性回归方程 | R2 | RMSE | ||
B1 | y=0.6550x-0.0076 | 0.8672 | 0.0050 | y=0.9660x+0.0033 | 0.9882 | 0.0017 | |
B2 | y=1.1694x-0.0186 | 0.8408 | 0.0096 | y=0.9457x+0.0046 | 0.9899 | 0.0018 | |
B3 | y=0.6819x-0.0054 | 0.9112 | 0.0057 | y=0.9534x+0.0054 | 0.9909 | 0.0024 | |
B4 | y=0.2154x+0.0845 | 0.8446 | 0.0135 | y=0.9391x+0.0015 | 0.9826 | 0.0070 |
[1] |
Singh A. Review Article digital change detection techniques using remotely-sensed data[J]. International Journal of Remote Sensing, 1989,10(6):989-1003.
doi: 10.1080/01431168908903939 |
[2] |
Teillet P M. Image correction for radiometric effects in remote sensing[J]. International Journal of Remote Sensing, 1986,7(12):1637-1651.
doi: 10.1080/01431168608948958 |
[3] | 郭丽峰, 高小红, 亢健, 等. 伪不变特征法在遥感影像归一化处理中的应用[J]. 遥感技术与应用, 2009,24(5):588-595. |
[ Guo L F, Gao X H, Kang J, et al. Application of the pseudo-invariant feature in normalization process of the remote sensing images[J]. Remote Sensing Technology and Application, 2009,24(5):588-595. ] | |
[4] |
Hong G, Zhang Y. A comparative study on radiometric normalization using high resolution satellite images[J]. International Journal of Remote Sensing, 2008,29(2):425-438.
doi: 10.1080/01431160601086019 |
[5] | 李德仁. 利用遥感影像进行变化检测[J]. 武汉大学学报·信息科学版, 2003,28(S1):7-12. |
[ Li D R. Change detection from remote sensing images[J]. Journal of Wuhan University, 2003,28(S1):7-12. ] | |
[6] |
Gómez C, White J C, Wulder M A. Optical remotely sensed time series data for land cover classification:A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016,116:55-72.
doi: 10.1016/j.isprsjprs.2016.03.008 |
[7] |
Zhang Y, Yu L, Sun M, et al. A mixed radiometric normalization method for mosaicking of high-resolution satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017,55(5):2972-2984.
doi: 10.1109/TGRS.2017.2657582 |
[8] |
Garcia-Torres L, Caballero-Novella J J, Gómez-Candón D, et al. Semi-automatic normalization of multitemporal remote images based on vegetative pseudo-invariant features[J]. PLoS One, 2014,9(3):e91275.
doi: 10.1371/journal.pone.0091275 |
[9] | Yu X, Zhan F B, Hu J, et al. Radiometric normalization for multitemporal and multispectral high resolution satellite images using ordinal conversion[C]. Proceedings of the 2010 18th International Conference on Geoinformatics. IEEE, 2010. |
[10] | 余晓敏, 邹勤. 多时相遥感影像辐射归一化方法综述[J]. 测绘与空间地理信息, 2012(6):8-12. |
[ Yu X M, Zou Q. Methods of radiometric normalization for multi-temporal remote sensing images: a review[J]. Geomatics & Spatial Information Technology, 2012(6):8-12. ] | |
[11] |
黄启厅, 覃泽林, 曾志康. 多源多时相遥感影像相对辐射归一化方法研究[J]. 地球信息科学学报, 2016,18(5):606-614.
doi: 10.3724/SP.J.1047.2016.00606 |
[ Huang Q T, Qin Z L, Zeng Z K. A study on the relative radiometric normalization of multi-sources and multi-temporal remote sensing data[J]. Journal of Geo-information Science, 2016,18(5):606-614. ] | |
[12] |
Lin B, Wang Z, Syariz M A, et al. Pseudoinvariant feature selection using multitemporal MAD for optical satellite images[J]. IEEE Geoscience and Remote Sensing Letters, 2019,16(9):1353-1357.
doi: 10.1109/LGRS.8859 |
[13] | Byun Y, Han D. Relative radiometric normalization of bitemporal very high-resolution satellite images for flood change detection[J]. Journal of Applied Remote Sensing, 2018,12(2):026021. |
[14] |
Schott J R, Salvaggio C, Volchok W J. Radiometric scene normalization using pseudoinvariant features[J]. Remote Sensing of Environment, 1988,26(1):1-16.
doi: 10.1016/0034-4257(88)90116-2 |
[15] |
Coppin P R, Bauer M E. Processing of multitemporal Landsat TM imagery to optimize extraction of forest cover change features[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994,32(4):918-927.
doi: 10.1109/36.298020 |
[16] |
Hall F G, Strebel D E, Nickeson J E, et al. Radiometric rectification: Toward a common radiometric response among multidate, multisensor images[J]. Remote Sensing of Environment, 1991,35(1):11-27.
doi: 10.1016/0034-4257(91)90062-B |
[17] | Elvidge C, Yuan D, Weerackoon R D, et al. Relative radiometric normalization of Landsat Multispectral Scanner (MSS) data using an automatic scattergram-controlled regression[J]. Photogrammetric Engineering & Remote Sensing, 1995,61(10):1255-1260. |
[18] |
Zhong C, Xu Q, Li B. Relative radiometric normalization for multitemporal remote sensing images by hierarchical regression[J]. IEEE Geoscience and Remote Sensing Letters, 2016,13(2):217-221.
doi: 10.1109/LGRS.2015.2506643 |
[19] |
Sadeghi V, Ebadi H, Ahmadi F F. A new model for automatic normalization of multitemporal satellite images using Artificial Neural Network and mathematical methods[J]. Applied Mathematical Modelling, 2013,37(9):6437-6445.
doi: 10.1016/j.apm.2013.01.006 |
[20] | Deng X, Wang C, Lei B. Automatic relative radiometric normalization algorithm based on pseudo-invariant neighborhood[C]. Proceedings of the 2008 Congress on Image and Signal Processing. IEEE, 2008. |
[21] |
De Carvalho A O, Guimarães F R, Silva c n, et al. Radiometric Normalization of temporal images combining automatic detection of pseudo-invariant features from the distance and similarity spectral measures, density scatterplot analysis, and robust regression[J]. Remote Sensing, 2013,5(6):2763-2794.
doi: 10.3390/rs5062763 |
[22] |
Zhou H Z, Liu S M, He J J, et al. A new model for the automatic relative radiometric normalization of multiple images with pseudo-invariant features[J]. International Journal of Remote Sensing, 2016,37(19):4554-4573.
doi: 10.1080/01431161.2016.1213922 |
[23] |
Nielsen A A, Conradsen K, Simpson J J. Multivariate Alteration Detection (MAD) and MAF postprocessing in multispectral, bitemporal image data: New approaches to change detection studies[J]. Remote Sensing of Environment, 1998,64(1):1-19.
doi: 10.1016/S0034-4257(97)00162-4 |
[24] |
Canty M J, Nielsen A A, Schmidt M. Automatic radiometric normalization of multitemporal satellite imagery[J]. Remote Sensing of Environment, 2004,91(3):441-451.
doi: 10.1016/j.rse.2003.10.024 |
[25] | 白洋. 基于核典型相关分析的遥感图像辐射归一化研究[D]. 北京:中国科学院大学, 2018. |
[ Bai Y. Radiometric normalization of remote sensing image based on kernel canonical correlation analysis[D]. Beijing: University of Chinese Academy of Scienes, 2018. ] | |
[26] |
Nielsen AA. The regularized iteratively reweighted MAD method for change detection in multi- and hyperspectral data[J]. IEEE Transactions on Image Processing, 2007,16(2):463-478.
doi: 10.1109/TIP.2006.888195 |
[27] |
Canty M J, Nielsen A A. Automatic radiometric normalization of multitemporal satellite imagery with the iteratively re-weighted MAD transformation[J]. Remote Sensing of Environment, 2008,112(3):1025-1036.
doi: 10.1016/j.rse.2007.07.013 |
[28] |
Tucker C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment, 1979,8(2):127-150.
doi: 10.1016/0034-4257(79)90013-0 |
[29] |
McFeeters S K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996,17(7):1425-1432.
doi: 10.1080/01431169608948714 |
[30] |
Li Z X, Shi W Z, Zhang H, et al. Change detection based on gabor wavelet features for very high resolution remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2017,14(5):783-787.
doi: 10.1109/LGRS.2017.2681198 |
[31] |
Li H, Celik T, Longbotham N, et al. Gabor feature based unsupervised change detection of multitemporal SAR images based on two-level clustering[J]. IEEE Geoscience and Remote Sensing Letters, 2015,12(12):2458-2462.
doi: 10.1109/LGRS.2015.2484220 |
[32] | 陈小光, 封举富. Gabor滤波器的快速实现[J]. 自动化学报, 2007,33(5):456-461. |
[ Chen X G, Feng J F. Fast Gabor filtering[J]. Acta Automatica Sinica, 2007,33(5):456-461. ] | |
[33] | Boyer R S, Moore J S. Automated reasoning: Essays in honor of Woody Bledsoe[M]. Dordrecht: Springer, 1991. |
[34] |
Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979,9(1):62-66.
doi: 10.1109/TSMC.1979.4310076 |
[35] | Eckhardt D W, Verdin J P, Lyford G R. Automated update of an irrigated lands GIS using SPOT HRV imagery[J]. Photogrammetric Engineering & Remote Sensing, 1990,56(11):1515-1522. |
[1] | 舒弥, 杜世宏. 国土调查遥感40年进展与挑战[J]. 地球信息科学学报, 2022, 24(4): 597-616. |
[2] | 赵泉华, 冯林达, 李玉. 基于最优极化特征组合的SAR影像湿地分类[J]. 地球信息科学学报, 2021, 23(4): 723-736. |
[3] | 王志华, 杨晓梅, 周成虎. 面向遥感大数据的地学知识图谱构想[J]. 地球信息科学学报, 2021, 23(1): 16-28. |
[4] | 王学文, 赵庆展, 韩峰, 马永建, 龙翔, 江萍. 机载多光谱影像语义分割模型在农田防护林提取中的应用[J]. 地球信息科学学报, 2020, 22(8): 1702-1713. |
[5] | 曹泽涛, 方子东, 姚瑾, 熊礼阳. 基于随机森林的黄土地貌分类研究[J]. 地球信息科学学报, 2020, 22(3): 452-463. |
[6] | 吴瑞娟, 何秀凤, 王静. 结合像元级与对象级的滨海湿地变化检测方法[J]. 地球信息科学学报, 2020, 22(10): 2078-2087. |
[7] | 耿仁方,付波霖,蔡江涛,陈晓雨,蓝斐芜,余杭洺,李青逊. 基于无人机影像和面向对象随机森林算法的岩溶湿地植被识别方法研究[J]. 地球信息科学学报, 2019, 21(8): 1295-1306. |
[8] | 马慧娟, 高小红, 谷晓天. 随机森林方法支持的复杂地形区土地利用/土地覆被分类研究[J]. 地球信息科学学报, 2019, 21(3): 359-371. |
[9] | 温小乐, 钟奥, 胡秀娟. 基于随机森林特征选择的城市绿化乔木树种分类[J]. 地球信息科学学报, 2018, 20(12): 1777-1786. |
[10] | 程熙, 吴炜, 夏列钢, 罗瑞, 沈占锋. 集成夜间灯光数据与Landsat TM影像的不透水面自动提取方法研究[J]. 地球信息科学学报, 2017, 19(10): 1364-1374. |
[11] | 李霞, 徐涵秋, 李晶, 郭燕滨. 基于NDSI和NDISI指数的SPOT-5影像裸土信息提取[J]. 地球信息科学学报, 2016, 18(1): 117-123. |
[12] | 郭燕滨, 徐涵秋, 张灿, 林思乡. 闽南金三角地区城市扩展及其驱动分析——以漳州市主城区为例[J]. 地球信息科学学报, 2015, 17(8): 927-936. |
[13] | 汪小钦, 石义方, 魏兰, 吴波. 福州海岸带湿地分类与变化的遥感分析[J]. 地球信息科学学报, 2014, 16(5): 838-833. |
[14] | 邹亚荣, 邹斌, 梁超, 崔松雪, 曾韬. 多元指标的海上溢油信息提取[J]. 地球信息科学学报, 2012, 14(2): 265-269. |
[15] | 夏叡, 李云梅, 王桥, 王彦飞, 金鑫, 徐恩惠. 无锡市城市扩张与热岛响应的遥感分析[J]. 地球信息科学学报, 2009, 11(5): 677-683. |
|