地球信息科学学报 ›› 2022, Vol. 24 ›› Issue (9): 1785-1802.doi: 10.12082/dqxxkx.2022.210571
于明洋1(), 陈肖娴1, 张文焯1, 刘耀辉1,2,3,*(
)
收稿日期:
2021-09-06
修回日期:
2021-10-16
出版日期:
2022-09-25
发布日期:
2022-11-25
通讯作者:
*刘耀辉(1991— ),男,山东海阳人,博士,讲师,主要从事遥感大数据与模式识别、灾害管理等研究。 E-mail: liuyaohui20@sdjzu.edu.cn作者简介:
于明洋(1978— ),男,山东东阿人,硕士,副教授,主要从事地理信息工程研发、深度学习和大数据分析研究。 E-mail: ymy@sdjzu.edu.cn
基金资助:
YU Mingyang1(), CHEN Xiaoxian1, ZHANG Wenzhuo1, LIU Yaohui1,2,3,*(
)
Received:
2021-09-06
Revised:
2021-10-16
Online:
2022-09-25
Published:
2022-11-25
Contact:
LIU Yaohui
Supported by:
摘要:
在高分辨率遥感影像中提取建筑物轮廓是地区基础建设信息统计的一项重要任务。适应性较强的深度学习方法已在建筑物提取研究中取得较大进展,受网络模型对影像特征表达的局限性,存在局部建筑轮廓边缘模糊的问题。本研究提出一种基于注意力的U型特征金字塔网络(AFP-Net)可以聚焦高分遥感影像中不同形态的建筑物结构,实现建筑物轮廓的高效提取。AFP-Net模型通过基于网格的注意力阀门Attention Gates模块抑制输入影像中的无关区域,凸出影像中建筑物的显性特征;通过特征金字塔注意力Feature Pyramid Attention模块增加高维特征图的感受野,减少采样中的细节损失。基于WHU建筑物数据集训练优化AFP-Net模型,测试结果表明AFP-Net模型能够较清晰地识别出建筑物轮廓,在预测性能上有更好的目视效果,在测试结果的总体精度和交并比上较U-Net模型分别提高0.67%和1.34%。结果表明,AFP-Net模型实现了高分遥感影像中建筑物提取的结果精度及预测性能的有效提升。
于明洋, 陈肖娴, 张文焯, 刘耀辉. 融合网格注意力阀门和特征金字塔结构的高分辨率遥感影像建筑物提取[J]. 地球信息科学学报, 2022, 24(9): 1785-1802.DOI:10.12082/dqxxkx.2022.210571
YU Mingyang, CHEN Xiaoxian, ZHANG Wenzhuo, LIU Yaohui. Building Extraction on High-Resolution Remote Sensing Images Using Attention Gates and Feature Pyramid Structure[J]. Journal of Geo-information Science, 2022, 24(9): 1785-1802.DOI:10.12082/dqxxkx.2022.210571
表1
AFP-Net的参数统计
结构块 | 类别 | 核尺寸 | 输出通道数 | 输出尺寸/pixel |
---|---|---|---|---|
Block 1-4 | Conv1 | (3, 3) | 64 | 256×256 |
Maxpool1 | (2, 2) | 64 | 128×128 | |
Conv2 | (3, 3) | 128 | 128×128 | |
Maxpool2 | (2, 2) | 128 | 64×64 | |
Conv3 | (3, 3) | 256 | 64×64 | |
Maxpool3 | (2, 2) | 256 | 32×32 | |
Conv4 | (3, 3) | 512 | 32×32 | |
Maxpool4 | (2, 2) | 512 | 16×16 | |
Block 5 | PPM | 1024 | 16×16 | |
Block 6-9 | Up_conv4 | Up-(3, 3) Conv-(2, 2) | 512 | 32×32 |
AG4 | 512 | 32×32 | ||
Up4 | 512 | 32×32 | ||
Up_conv3 | Up-(3, 3) Conv-(2, 2) | 256 | 64×64 | |
AG3 | 256 | 64×64 | ||
Up3 | 256 | 64×64 | ||
Up_conv2 | Up-(3, 3) Conv-(2, 2) | 128 | 128×128 | |
AG2 | 512 | 128×128 | ||
Up2 | 512 | 128×128 | ||
Up_conv1 | Up-(3, 3) Conv-(2, 2) | 64 | 256×256 | |
AG 1 | 64 | 256×256 | ||
Up1 | 64 | 256×256 | ||
Block 10 | Conv_1x1 | (1, 1) | 1 | 256×256 |
Sigmoid | 1 | 256×256 |
[1] | 吴炜, 骆剑承, 沈占锋, 等. 光谱和形状特征相结合的高分辨率遥感图像的建筑物提取方法[J]. 武汉大学学报·信息科学版, 2012, 37(7):800-805. |
[ Wu W, Luo J C, Shen Z F, et al. Building extraction from high resolution remote sensing imagery based on spatial-spectral method[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7):800-805. ] DOI: 10.13203/j.whugis2012.07.022
doi: 10.13203/j.whugis2012.07.022 |
|
[2] |
Lunetta R S, Johnson D M, Lyon J G, et al. Impacts of imagery temporal frequency on land-cover change detection monitoring[J]. Remote Sensing of Environment, 2004, 89(4):444-454. DOI: 10.1016/j.rse.2003.10.022
doi: 10.1016/j.rse.2003.10.022 |
[3] | 杜培军, 夏俊士, 薛朝辉, 等. 高光谱遥感影像分类研究进展[J]. 遥感学报, 2016, 20(2):236-256. |
[ Du P J, Xia J S, Xue Z H, et al. Review of hyperspectral remote sensing image classification[J]. Journal of Remote Sensing, 2016, 20(2):236-256. ] DOI: 10.11834/jrs.20165022
doi: 10.11834/jrs.20165022 |
|
[4] |
Liu Y H, Zhou J, Qi W H, et al. ARC-net: An efficient network for building extraction from high-resolution aerial images[J]. IEEE Access, 2020, 8:154997-155010. DOI: 10.1109/ACCESS.2020.3015701
doi: 10.1109/ACCESS.2020.3015701 |
[5] |
Lin C G, Nevatia R. Building detection and description from a single intensity image[J]. Computer Vision and Image Understanding, 1998, 72(2):101-121. DOI: 10.1006/cviu.1998.0724
doi: 10.1006/cviu.1998.0724 |
[6] | 黄金库, 冯险峰, 徐秀莉, 等. 基于知识规则构建和形态学修复的建筑物提取研究[J]. 地理与地理信息科学, 2011, 27(4):28-31. |
[ Huang J K, Feng X F, Xu X L, et al. A study of building extraction based on morphological rehabilitation and rule-oriented classification[J]. Geography and Geo-Information Science, 2011, 27(4):28-31. ] | |
[7] | 方鑫, 陈善雄. 密集城区高分辨率遥感影像建筑物提取[J]. 测绘通报, 2019(4):79-83. |
[ Fang X, Chen S X. High resolution remote sensing image building extraction in dense urban areas[J]. Bulletin of Surveying and Mapping, 2019(4):79-83. ] DOI: 10.13474/j.cnki.11-2246.2019.0117
doi: 10.13474/j.cnki.11-2246.2019.0117 |
|
[8] |
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2016:770-778. DOI: 10.1109/CVPR.2016.90
doi: 10.1109/CVPR.2016.90 |
[9] |
Huang G, Liu Z, van der Maaten L, et al. Densely connected convolutional networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2017:2261-2269. DOI: 10.1109/CVPR.2017.243
doi: 10.1109/CVPR.2017.243 |
[10] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90. DOI: 10.1145/3065386
doi: 10.1145/3065386 |
[11] | Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]// AAAI'17:Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. 2017:4278-4284. |
[12] | Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[EB/OL]. 2014: arXiv: 1409.1556. https://arxiv.org/abs/1409.1556 |
[13] |
Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[C]// IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE,: 640-651. DOI: 10.1109/TPAMI.2016.2572683
doi: 10.1109/TPAMI.2016.2572683 |
[14] |
Badrinarayanan V, Kendall A, Cipolla R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495. DOI: 10.1109/TPAMI.2016.2644615
doi: 10.1109/TPAMI.2016.2644615 pmid: 28060704 |
[15] |
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015:234-241. DOI: 10.1007/978-3-319-24574-4_28
doi: 10.1007/978-3-319-24574-4_28 |
[16] |
Chen L C, Papandreou G, Kokkinos I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848. DOI: 10.1109/TPAMI.2017.2699184
doi: 10.1109/TPAMI.2017.2699184 |
[17] |
Lv X W, Ming D P, Chen Y Y, et al. Very high resolution remote sensing image classification with SEEDS-CNN and scale effect analysis for superpixel CNN classification[J]. International Journal of Remote Sensing, 2019, 40(2):506-531. DOI: 10.1080/01431161.2018.1513666
doi: 10.1080/01431161.2018.1513666 |
[18] |
Chen Y Y, Ming D P, Lv X W. Superpixel based land cover classification of VHR satellite image combining multi-scale CNN and scale parameter estimation[J]. Earth Science Informatics, 2019, 12(3):341-363. DOI: 10.1007/s12145-019-00383-2
doi: 10.1007/s12145-019-00383-2 |
[19] |
Zhang C X, Yue P, Tapete D, et al. A multi-level context-guided classification method with object-based convolutional neural network for land cover classification using very high resolution remote sensing images[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 88:102086. DOI: 10.1016/j.jag.2020.102086
doi: 10.1016/j.jag.2020.102086 |
[20] |
Chen S X, Shi W Z, Zhou M T, et al. Automatic building extraction via adaptive iterative segmentation with LiDAR data and high spatial resolution imagery fusion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:2081-2095. DOI: 10.1109/JSTARS.2020.2992298
doi: 10.1109/JSTARS.2020.2992298 |
[21] | 陈凯强, 高鑫, 闫梦龙, 等. 基于编解码网络的航空影像像素级建筑物提取[J]. 遥感学报, 2020, 24(9):1134-1142. |
[ Chen K Q, Gao X, Yan M L, et al. Building extraction in pixel level from aerial imagery with a deep encoder-decoder network[J]. Journal of Remote Sensing, 2020, 24(9):1134-1142. ] | |
[22] |
Guo H N, Shi Q, Du B, et al. Scene-driven multitask parallel attention network for building extraction in high-resolution remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(5):4287-4306. DOI: 10.1109/TGRS.2020.3014312
doi: 10.1109/TGRS.2020.3014312 |
[23] |
朱盼盼, 李帅朋, 张立强, 等. 基于多任务学习的高分辨率遥感影像建筑提取[J]. 地球信息科学学报, 2021, 23(3):514-523.
doi: 10.12082/dqxxkx.2021.190805 |
[ Zhu P P, Li S P, Zhang L Q, et al. Multitask learning-based building extraction from high-resolution remote sensing images[J]. Journal of Geo-information Science, 2021, 23(3):514-523. ] DOI: 10.12082/dqxxkx.2021.190805
doi: 10.12082/dqxxkx.2021.190805 |
|
[24] |
Alshehhi R, Marpu P R, Woon W L, et al. Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130:139-149. DOI: 10.1016/j.isprsjprs.2017.05.002
doi: 10.1016/j.isprsjprs.2017.05.002 |
[25] | 谢跃辉, 李百寿, 刘聪娜. 结合多种影像特征与CNN的城市建筑物提取[J]. 遥感信息, 2020, 35(5):80-88. |
[ Xie Y H, Li B S, Liu C N. Urban building extraction by combining multiple image features and CNN[J]. Remote Sensing Information, 2020, 35(5):80-88. ] DOI: 10.3969/j.issn.1000-3177.2020.05.010
doi: 10.3969/j.issn.1000-3177.2020.05.010 |
|
[26] | 刘亦凡, 张秋昭, 王光辉, 等. 利用深度残差网络的遥感影像建筑物提取[J]. 遥感信息, 2020, 35(2):59-64. |
[ Liu Y F, Zhang Q Z, Wang G H, et al. Building extraction in remote sensing imagery based on deep residual network[J]. Remote Sensing Information, 2020, 35(2):59-64. ] DOI: 10.3969/j.issn.1000-3177.2020.02.010
doi: 10.3969/j.issn.1000-3177.2020.02.010 |
|
[27] |
Chen M, Wu J J, Liu L Z, et al. DR-net: An improved network for building extraction from high resolution remote sensing image[J]. Remote Sensing, 2021, 13(2):294. DOI: 10.3390/rs13020294
doi: 10.3390/rs13020294 |
[28] |
Guo M Q, Liu H, Xu Y Y, et al. Building extraction based on U-net with an attention block and multiple losses[J]. Remote Sensing, 2020, 12(9):1400. DOI: 10.3390/rs12091400
doi: 10.3390/rs12091400 |
[29] |
Zhang L L, Wu J S, Fan Y, et al. An efficient building extraction method from high spatial resolution remote sensing images based on improved mask R-CNN[J]. Sensors (Basel, Switzerland), 2020, 20(5):1465. DOI: 10.3390/s20051465
doi: 10.3390/s20051465 |
[30] |
Yang H, Wu P H, Yao X D, et al. Building extraction in very high resolution imagery by dense-attention networks[J]. Remote Sensing, 2018, 10(11):1768. DOI: 10.3390/rs10111768
doi: 10.3390/rs10111768 |
[31] |
Ye Z R, Fu Y Y, Gan M Y, et al. Building extraction from very high resolution aerial imagery using joint attention deep neural network[J]. Remote Sensing, 2019, 11(24):2970. DOI: 10.3390/rs11242970
doi: 10.3390/rs11242970 |
[32] |
Jin Y W, Xu W B, Zhang C, et al. Boundary-aware refined network for automatic building extraction in very high-resolution urban aerial images[J]. Remote Sensing, 2021, 13(4):692. DOI: 10.3390/rs13040692
doi: 10.3390/rs13040692 |
[33] |
Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651. DOI: 10.1109/TPAMI.2016.2572683
doi: 10.1109/TPAMI.2016.2572683 pmid: 27244717 |
[34] |
Zhao H S, Shi J P, Qi X J, et al. Pyramid scene parsing network[C]// 2017. IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2017:6230-6239. DOI: 10.1109/CVPR.2017.660
doi: 10.1109/CVPR.2017.660 |
[35] |
Fu J, Liu J, Tian H J, et al. Dual attention network for scene segmentation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019:3141-3149. DOI: 10.1109/CVPR.2019.00326
doi: 10.1109/CVPR.2019.00326 |
[36] |
唐璎, 刘正军, 杨懿, 等. 基于特征增强和ELU的神经网络建筑物提取研究[J]. 地球信息科学学报, 2021, 23(4):692-709.
doi: 10.12082/dqxxkx.2021.200130 |
[ Tang Y, Liu Z J, Yang Y, et al. Research on building extraction based on neural network with feature enhancement and ELU activation function[J]. Journal of Geo-Information Science, 2021, 23(4):692-709. ] | |
[37] | Vaswani A, Shazeer N, Parmar N, et al. Attention is all You need[EB/OL]. 2017: arXiv: 1706.03762. https://arxiv.org/abs/1706.03762 |
[38] | Li H C, Xiong P F, An J, et al. Pyramid attention network for semantic segmentation[EB/OL]. 2018: arXiv: 1805. 10180. https://arxiv.org/abs/1805.10180 |
[39] |
Zhao W, Ivanov I, Persello C, et al. Building outline delineation: From very high resolution remote sensing imagery to polygons with an improved end-to-end learning framework[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020,: 731-735. DOI: 10.5194/isprs-archives-xliii-b2-2020-731-2020
doi: 10.5194/isprs-archives-xliii-b2-2020-731-2020 |
[40] |
Ji S P, Wei S Q, Lu M. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1):574-586. DOI: 10.1109/TGRS.2018.2858817
doi: 10.1109/TGRS.2018.2858817 |
[41] | Oktay O, Schlemper J, Folgoc L L, et al. Attention U-net: Learning where to look for the pancreas[EB/OL]. 2018: arXiv: 1804.03999. https://arxiv.org/abs/1804.03999 |
[42] |
Sandler M, Howard A, Zhu M L, et al. MobileNetV2:inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2018:4510-4520. DOI: 10.1109/CVPR.2018.00474
doi: 10.1109/CVPR.2018.00474 |
[43] | Han S, Pool J, Tran J, et al. Learning both weights and connections for efficient neural networks[EB/OL]. 2015: arXiv: 1506.02626. https://arxiv.org/abs/1506.02626 |
[44] |
Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module[M]//Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018:3-19. DOI: 10.1007/978-3-030-01234-2_1
doi: 10.1007/978-3-030-01234-2_1 |
[45] |
Hu J, Shen L, Albanie S, et al. Squeeze-and-excitation networks[C]// IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE,: 2011- 2023. DOI: 10.1109/TPAMI.2019.2913372
doi: 10.1109/TPAMI.2019.2913372 |
[46] | Guo M H, Xu T X, Liu J J, et al. Attention mechanisms in computer vision: A survey[EB/OL]. 2021: arXiv: 2111.07624. https://arxiv.org/abs/2111.07624 |
[47] |
Shen Y, Fang Z J, Gao Y B, et al. Coronary arteries segmentation based on 3D FCN with attention gate and level set function[J]. IEEE Access, 2019, 7:42826-42835. DOI: 10.1109/ACCESS.2019.2908039
doi: 10.1109/ACCESS.2019.2908039 |
[48] | 刘耀辉. 面向地震风险评估的高分辨率遥感影像建筑物信息提取与研究[D]. 北京: 中国地震局地质研究所, 2020. |
[ Liu Y H. Extraction and research on building information from high-resolution remote sensing image for seismic risk assessment[D]. Beijing: Institute of Geology, China Earthquake Administration, 2020. ] DOI: 10.27489/d.cnki.gzdds.2020.000001
doi: 10.27489/d.cnki.gzdds.2020.000001 |
|
[49] | Mnih V. Machine Learning for Aerial Image Labeling[D]. Toronto: University of Toronto, Graduate Department of Computer Science, 2013. |
[50] |
Liu Y H, Gross L, Li Z Q, et al. Automatic building extraction on high-resolution remote sensing imagery using deep convolutional encoder-decoder with spatial pyramid pooling[J]. IEEE Access, 2019, 7:128774-128786. DOI: 10.1109/ACCESS.2019.2940527
doi: 10.1109/ACCESS.2019.2940527 |
[51] |
Xing H Q, Zhu L Y, Feng Y Y, et al. An adaptive change threshold selection method based on land cover posterior probability and spatial neighborhood information[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:11608-11621. DOI: 10.1109/JSTARS.2021.3124491
doi: 10.1109/JSTARS.2021.3124491 |
[52] |
Dixit M, Chaurasia K, Mishra V K. Automatic building extraction from high-resolution satellite images using deep learning techniques[C]// Proceedings of the International Conference on Paradigms of Computing, Communication and Data Sciences. Singapore: Springer Singapore, 2021:773-783. DOI: 10.1007/978-981-15-7533-4_61
doi: 10.1007/978-981-15-7533-4_61 |
[53] |
Xing H Q, Zhu L Y, Hou D Y, et al. Integrating change magnitude maps of spectrally enhanced multi-features for land cover change detection[J]. International Journal of Remote Sensing, 2021, 42(11):4284-4308. DOI: 10.1080/01431161.2021.1892860
doi: 10.1080/01431161.2021.1892860 |
[1] | 左溪冰, 刘智, 金飞, 林雨准, 王淑香, 刘潇, 李美霖. 面向高光谱影像小样本分类的全局-局部特征自适应融合方法[J]. 地球信息科学学报, 2023, 25(8): 1699-1716. |
[2] | 林娜, 何静, 王斌, 唐菲菲, 周俊宇, 郭江. 结合植被光谱特征与Sep-UNet的城市植被信息智能提取方法[J]. 地球信息科学学报, 2023, 25(8): 1717-1729. |
[3] | 张春菊, 刘文聪, 张雪英, 叶鹏, 汪陈, 朱少楠, 张达玉. 基于本体的金矿知识图谱构建方法[J]. 地球信息科学学报, 2023, 25(7): 1269-1281. |
[4] | 张彤, 刘仁宇, 王培晓, 高楚林, 刘杰, 王望舒. 感知物理先验的机器学习及其在地理空间智能中的研究前景[J]. 地球信息科学学报, 2023, 25(7): 1297-1311. |
[5] | 曹兴文, 吴孟泉, 郑雪婷, 郑宏伟, 李映祥, 张安安. 室内空间布局约束下的在线跟踪注册学习方法[J]. 地球信息科学学报, 2023, 25(7): 1418-1431. |
[6] | 赵丹, 杜萍, 刘涛, 令振飞. 融合图自编码器与GRU的城市盗窃犯罪时空分布预测模型[J]. 地球信息科学学报, 2023, 25(7): 1448-1463. |
[7] | 金广垠, 沙恒宇, 张金雷, 黄金才. 基于路段-路口联合建模的对偶图卷积网络的行程时间估计方法[J]. 地球信息科学学报, 2023, 25(7): 1500-1513. |
[8] | 刘潇, 刘智, 林雨准, 王淑香, 左溪冰. 面向遥感影像场景分类的类中心知识蒸馏方法[J]. 地球信息科学学报, 2023, 25(5): 1050-1063. |
[9] | 侯慧太, 蓝朝桢, 徐青. 基于卫星影像全局和局部深度学习特征检索的无人机绝对定位方法[J]. 地球信息科学学报, 2023, 25(5): 1064-1074. |
[10] | 张金雷, 陈奕洁, Panchamy Krishnakumari, 金广垠, 王骋程, 杨立兴. 基于注意力机制的城市轨道交通网络级多步短时客流时空综合预测模型[J]. 地球信息科学学报, 2023, 25(4): 698-713. |
[11] | 衡雪彪, 许捍卫, 唐璐, 汤恒, 许怡蕾. 基于改进全卷积神经网络模型的土地覆盖分类方法研究[J]. 地球信息科学学报, 2023, 25(3): 495-509. |
[12] | 于方圆, 曹家玮, 李发源, 李思进. 顾及对象特征的地面式光伏电站提取及减碳效益评估[J]. 地球信息科学学报, 2023, 25(3): 529-545. |
[13] | 高建文, 管海燕, 彭代锋, 许正森, 康健, 季雅婷, 翟若雪. 基于局部-全局语义特征增强的遥感影像变化检测网络模型[J]. 地球信息科学学报, 2023, 25(3): 625-637. |
[14] | 江宝得, 许少芬, 王进, 王淼. 基于条件生成对抗网络的电子地图可视水印去除方法[J]. 地球信息科学学报, 2023, 25(2): 288-297. |
[15] | 谢谦, 陆明, 谢春山. 基于LBS和深度学习的旅游景区客流量的高时频预测[J]. 地球信息科学学报, 2023, 25(2): 298-310. |
|