空间分析综合应用

基于SOFM网络的景观功能分类——以北京及周边地区为例

展开
  • 1. 北京大学城市与环境学院 地表过程与模拟教育部重点实验室, 北京 100871;
    2. 北京大学深圳研究生院 城市规划与设计学院 城市人居环境科学与技术重点实验室, 深圳 518055
冯喆(1984-),男,北京人,博士研究生,研究方向为景观生态学。E-mail:sucreal@126.com

收稿日期: 2012-11-03

  修回日期: 2012-12-05

  网络出版日期: 2012-12-25

基金资助

国家自然科学基金重点项目(41130534)资助。

Classification of Landscape Functions Using SOFM Neural Network: A Case Study from Beijing and Its Peripheral Area

Expand
  • 1. College of Urban and Environmental Sciences, Peking University; Key Laboratory for Earth Surface Processes of the Ministry of Education, Beijing 100871, China;
    2. The Key Laboratory for Environmental and Urban Sciences, Shenzhen Graduate School, School of Urban Planning & Design, Peking University, Shenzhen 518055, China

Received date: 2012-11-03

  Revised date: 2012-12-05

  Online published: 2012-12-25

摘要

景观多功能性是景观生态学研究的热点领域,需要一种既能体现景观多功能整体性,又能表征各功能间独立性的表达方法。本文以北京及其周边地区为研究区,以500m栅格为最小评价单元,使用空间化的统计数据表征物质生产功能,使用植被生物量与土壤含碳量之和表征碳汇功能,使用潜在水土流失量与实际水土流失量的差值表征土壤保持功能,使用生态系统服务功能的评估结果表征生境维持功能,使用人口空间化数据表征居住功能。在计算5种景观功能强度后,通过自组织特征映射模型将土地栅格进行聚类分析。研究结果表明:景观功能强度具有空间异质性。景观功能强度可分为以农地为优势景观,以物质生产为主要功能的农业功能区域;以农地和城市用地为优势景观,以居住和碳汇为主要功能的城市功能区域;以林草地为优势景观,以土壤保持和生境维持为主要功能的生态功能区域;以及优势景观不明显,各项功能均衡发展的过渡功能区域4类。该分类方法既可较好地表达多功能景观的功能分异和空间分异,又能为其研究土地利用和生态管理实践提供理论依据。

本文引用格式

冯喆, 吴健生, 高阳, 彭建, 宗敏丽, 王政 . 基于SOFM网络的景观功能分类——以北京及周边地区为例[J]. 地球信息科学学报, 2012 , 14(6) : 800 -806 . DOI: 10.3724/SP.J.1047.2012.00800

Abstract

Landscape multifunction is a hotspot in the fields of landscape ecology. In order to explore a method which can reflect both integrity and independence of landscape multifunction, this research focuses on the clustering of landscape functions, taking Beijing and its peripheral area, China, as the study area. Five landscape function intensities, material production, carbon storage, soil retention, habitat conservation, and population support, are calculated using a variety of ecological models and indices in a grid map. Then, based on the results of landscape multi-function calculation, the study area are clustered through self-organizing feature map model. The quantitative results show that different regions turned out to have different and relative unique effects on the regional priority functions. Beijing and its peripheral area can be divided into four landscape function regions: agricultural region, whose dominant function is material production; urban region, whose dominant functions are population support and carbon storage; ecological region, whose dominant functions are soil retention and habitat conservation; and transition region, which does not have dominant functions, but reflects the interaction between human and nature. The validation of the results also shows that the presented SOFM neural network model is an effective and appropriate method for cluster analysis. Clustering results based on the SOFM model exhibit significant regional heterogeneity, with notable regional differences in the four clustering types within the research area. This spatial comprehensive dataset, combined with the independence from mechanistic ecological assumptions of the SOFM network approach provides a unique opportunity to validate and assess modeling efforts. The dominant landscape functions influencing regional development differ from one area to another. Furthermore, characteristics of the landscape indices and functions vary with region. Despite its limitations and uncertainty, the application of the presented method on clustering landscapes function using the SOFM model organization in connection with high performance computers is encouraged as a very interesting and important goal for future studies. The approaches to achieve sustainable regional development were illustrated and their importance highlighted for policy makers and stakeholders.

参考文献

[1] Willemen L, Veldkamp A, Verburg P H, et al. A multi-scale modelling approach for analysing landscape service dynamics [J]. Journal of Environmental Management, 2012, 100: 86-95.

[2] 彭建,王仰麟,景娟,等. 城市景观功能的区划协调规划——以深圳市为例[J]. 生态学报, 2005, 25(7): 1714-1719.

[3] Termorshuizen J W, Opdam P. Landscape services as a bridge between landscape ecology and sustainable development [J]. Landscape Ecology, 2009, 24: 1037-1052.

[4] 谢花林. 乡村景观功能评价[J]. 生态学报, 2004, 24(9): 1988-1993.

[5] 傅伯杰,吕一河,陈利顶,等. 国际景观生态学研究新进展[J]. 生态学报,2008,28(2): 798-804.

[6] 周华荣. 干旱区湿地多功能景观研究的意义与前景分析[J]. 干旱区地理, 2005, 28(1): 16-20.

[7] Helming K, Perez-Soba M, Tabbush P, eds. Sustainability Impact Assessment of land use changes [D]. Berlin Heidelberg: Springer-Verlag, 2008.

[8] 角媛梅. 哀牢山区梯田景观多功能的综合评价[J]. 云南地理环境研究,2008, 20(6): 7-10.

[9] Daily G C, Matson P A. Ecosystem services: From theory to implementation [J]. PNAS, 2008, 105: 9455-9456.

[10] Tallis H, Kareiva P, Marvier M, et al. An ecosystem services framework to support both practical conservation and economic development [J]. PNAS, 2008, 105: 9457-9464.

[11] Bennett E M, Balvanera P. The future of production systems in a globalized world [J]. Frontiers in Ecology and the Environment, 2007, 5: 191-198.

[12] Rodriguez J P, Beard T D, Bennett E M, et al. Tradeoffs across space, time, and ecosystem services [J]. Ecology and Society, 2006, 11(1): 28-42.

[13] Bennett E M, Peterson G D, Gordon, L J. Understanding relationships among multiple ecosystem services [J]. Ecology Letters, 2009, 12: 1394-1404.

[14] Bai Y, Zhuang C, Ouyang, Z, et al. Spatial characteristics between biodiversity and ecosystem services in a human-dominated watershed [J]. Ecological Complexity, 2011, 8: 177-183.

[15] Naveh Z. Ten major p remises for a holistic conception of multifunctional landscapes [J]. Landscape and Urban Planning, 2001, 57: 269-284.

[16] Boyd J, Banzhaf S. What are ecosystem services? The need for standardized environmental accounting units [J]. Ecological Economics, 2007, 63: 616-626.

[17] 甄霖,魏云洁,谢高地,等. 中国土地利用多功能性动态的区域分析[J]. 生态学报,2010, 30(24): 6749-6761.

[18] 刘彦随,刘玉,陈玉福. 中国地域多功能性评价及其决策机制[J]. 地理学报, 2011, 66(10): 1379-1389.

[19] 郑元润,周广胜. 基于NDVI的中国天然森林植被净第一性生产力模型[J]. 植物生态学报, 2000, 24(1): 9-12.

[20] 黄玫,季劲钧,曹明奎,等. 中国区域植被地上与地下生物量模拟[J]. 生态学报,2006, 26(12): 4156-4163.

[21] 姜群鸥,邓祥征,战金艳,等. 黄淮海平原耕地转移对植被碳储量的影响[J]. 地理研究, 2008, 27(4): 839-846.

[22] 奚小环,杨忠芳,廖启林,等. 中国典型地区土壤碳储量研究[J]. 第四纪研究,2010,30(3): 573-583.

[23] Ouyang Z, Jin Y, Zhao T, et al. Ecosystem regulating services and their valuation of Hainan island, China [J]. Journal of Resources and Ecology, 2011, 2(2): 132-140.

[24] 马志尊. 应用卫星影像估算通用土壤流失方程各因子值方法的探讨[J]. 中国水土保持, 1989, 3: 24-27.

[25] 门明新,赵同科,彭正萍,等. 基于土壤粒径分布模型的河北省土壤可蚀性研究[J]. 中国农业科学, 2004, 37(11): 1647-1653.

[26] 李晓松,姬翠翠,曾源,等. 基于遥感和GIS的水土流失动态监测——以河北省赤城县为例[J]. 生态学杂志,2009,28(9): 1723-1729.

[27] Nelson E, Mendoza G, Regetz J, et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales [J]. Frontiers in Ecology and Environment, 2009, 7(1): 4-11.

[28] Tallis H T, Ricketts T, Guerry A D, et al. InVEST 2.1 beta User's Guide [D]. The Natural Capital Project, Stanford. 2011.

[29] 杨小唤,江东,王乃斌,等. 人口数据空间化的处理方法[J]. 地理学报,2002,57(增刊): 70-75.

[30] 杨小唤,王乃斌,江东,等. 基于空间分析方法的人口空间分布区划[J]. 地理学报,2002,57(增刊): 76-81.

[31] 王韶伟,许新宜,陈海英. 基于SOFM网络的生态水文区划[J]. 生态学杂志,2010,29(11): 2302-2308.

[32] 叶敏婷,王仰麟,彭建,等. 基于SOFM网络的云南省土地利用程度类型划分研究[J]. 地理科学进展,2007,26(2): 97-105.

[33] 陈凯,刘增文,李俊,等. 基于SOFM网络对黄土高原森林生态系统的养分循环分类研究[J]. 生态学报, 2011, 31(23): 7022-7030.

文章导航

/