特殊事件中国际关系网络时序演化分析
姚博睿(1995— ),男,海南琼海人,硕士生,研究方向为时空数据挖掘与大数据分析。E-mail: yaoborui@whu.edu.cn |
收稿日期: 2020-07-13
要求修回日期: 2020-10-20
网络出版日期: 2021-06-25
基金资助
国家重点研发计划项目(2017YFB0503604)
国家自然科学基金项目(41471326)
国家自然科学基金项目(41525004)
版权
Sequential Evolution Analysis of International Relations Network in Special Events
Received date: 2020-07-13
Request revised date: 2020-10-20
Online published: 2021-06-25
Supported by
National Key Research and Development Program(2017YFB0503604)
National Natural Science Foundation of China(41471326)
National Natural Science Foundation of China(41525004)
Copyright
21世纪以来的国际关系错综复杂、瞬息万变,给世界的经济、政治、安全、外交等带来了深刻影响。及时掌握国际关系的变化对中国外交政策制定、整体发展规划有着极为重要的意义。随着大数据时代的来临,应用大数据方法结合国际关系定量分析的工具对国际关系变化模式进行及时、有效地挖掘成为了一个重要的议题。强时效性、高信息量的新闻事件大数据蕴含能及时地反映出国际事件影响全球国际关系的信息。网络化挖掘作为一种面向大数据的信息挖掘方法,因其具象化的关系表达方式和丰富的结构分析方法组成为数据驱动的国际关系研究的重要方法。以短期国际事件为背景,对新闻事件大数据进行网络化挖掘,进行国际关系网络的时序演化分析,能够在短期国际事件造成国际关系变化的场景下,提供应对国际关系变化的解决方案参考。本文以中美贸易战为例研究特殊事件中国际关系网络的时序演化模式:基于GDELT新闻事件数据进行国际关系网络的构建,利用复杂网络方法进行信息挖掘并进行国际关系分析。首先利用该数据构建国际关系网络,然后用动态社区划分方法对其进行时序演化模式探测,最后结合点分布模式、核密度分析、空间自相关等空间分析方法对其进行空间特性分析。研究发现:① 在特殊事件发生过程中,网络社区的演化方式与发生的子事件类型具有很强的相关性;② 同一社区的节点在空间分布上一般呈现明显的聚集特征,特定区域节点加入不同社区频率高,节点网络属性值的空间高值分布随事件发生而改变;③ 网络局部特征值随子事件发生往往会发生较大变化。本文的研究为短期国际事件中的国际关系动态变化实证分析提供了一个新的视角,为国际关系研究的空间转向提供了一个新的思路,在方法层面对数据驱动的国际关系研究进行了补充,同时也为大数据的网络化挖掘提供了参考。
姚博睿 , 秦昆 , 罗萍 , 朱炤瑗 , 漆林 . 特殊事件中国际关系网络时序演化分析[J]. 地球信息科学学报, 2021 , 23(4) : 632 -645 . DOI: 10.12082/dqxxkx.2021.200366
Since the beginning of the 21st century, the complex and fast-changing international relations have brought profound effects to the world economy, politics, security, and diplomacy. Keeping abreast of the changes in international relations is of great significance to China's foreign policy making and overall development planning. With the advent of the era of big data, the application of big data combined with quantitative analysis tools of international relations to timely and effectively mine the change patterns of international relations has become an important issue. Big data of news events with strong timeliness and high information content can timely reflect the information that international events affect global international relations. As an information mining method oriented to big data, network mining is a good choice for data-driven international relations research because of its figurative relational expression and rich structural analysis methods. Taking short-term international events as the background, the network mining of big data of news events and the sequential evolution analysis of international relations network can provide solutions to the changes of international relations in the context of changes of international relations caused by short-term international events. This paper takes the Trade War between China and the United States as an example to study the temporal evolution pattern of the international relations network in special events. Based on the GDELT news event data, the international relations network is constructed, and methods based on complex network theory are used for information mining and analysis of international relations. Firstly, the data are used to construct the international relationship network, then the temporal evolution patterns are detected by dynamic community partition method, and finally the spatial characteristics are analyzed by combining the spatial analysis methods such as analysis of point distribution patterns, nuclear density analysis, and spatial autocorrelation analysis. The results show that: (1) In the process of the occurrence of special events, there is a strong correlation between the evolution of the network community and the type of sub-events; and (2) Nodes in the same community generally show obvious clustering characteristics in spatial distribution. Nodes in a specific region join different communities with high frequency. The spatial distribution of the high values of node network attribute changes with the occurrence of events. The local eigenvalues of the network change dramatically with the occurrence of sub-events. The research in this paper provides a new perspective for the empirical analysis of the dynamic changes of international relations in short-term international events, provides a new idea for the spatial shift of international relations research, complements the data-driven international relations research at the methodological level, and also provides a reference for the network mining of big data.
表1 中美贸易战事件发展阶段表Tab. 1 Event development stage of China-US trade war |
阶段编号 | 时段 | 说明 |
---|---|---|
发展阶段1 | 2018年6月10日— 2018年6月16日 | 前期发展到正式开战阶段 |
发展阶段2 | 2018年6月16日— 2018年6月20日 | 正式开战到拉拢盟友阶段 |
发展阶段3 | 2018年6月20日— 2018年8月2日 | 拉拢盟友到态势升级阶段 |
发展阶段4 | 2018年8月2日— 2018年9月18日 | 态势升级到进一步发展阶段 |
发展阶段5 | 2018年9月18日— 2019年1月9日 | 进一步发展到寻求磋商阶段 |
发展阶段6 | 2019年1月9日— 2019年5月11日 | 寻求磋商到谈判无果阶段 |
表2 全时期等间隔阶段划分Tab. 2 Division of equal-interval stages in the whole period |
阶段编号 | 时段 |
---|---|
阶段1 | 2018年6月10日—2018年8月5日 |
阶段2 | 2018年8月5日—2018年9月30日 |
阶段3 | 2018年9月30日—2018年11月25日 |
阶段4 | 2018年11月25日—2019年1月20日 |
阶段5 | 2019年1月20日—2019年3月17日 |
阶段6 | 2019年3月17日—2019年5月12日 |
表3 全时态全社区γ值计算结果值Tab. 3 Results of γ value calculation in all communities in all phases |
间隔1 | 间隔2 | 间隔3 | 间隔4 | |
---|---|---|---|---|
社团1子网络 | 0.6416 | 0.4374 | 0.0622 | 0.0198 |
社团2子网络 | 0.1714 | 0.1384 | 0.1885 | 0.5657 |
社团3子网络 | 1.6857 | 2 | 0 | 0 |
社团4子网络 | 1.9090 | 1 | 0 | 0 |
社团5子网络 | 1.9709 | 0.2014 | 0.0633 | 0.0429 |
社团6子网络 | 0.2717 | 0.0769 | 0.5648 | 0.2079 |
社团7子网络 | 0.3838 | 0.2428 | 0.0833 | 3.2735 |
社团8子网络 | 2 | 0 | 0 | 0 |
社团9子网络 | inf | 0.3891 | 1.5833 | 0.0202 |
社团10子网络 | inf | 0 | 0 | 0 |
社团11子网络 | 0 | inf | 0.1732 | 0.215 |
注:表中值为inf代表前序网络中该社团节点或边数为0,后续网络中该社区节点数或边数不为0,即在网络演变中产生了新社区。 |
表4 全阶段节点特征向量中心度前16国家/地区Tab. 4 The top 16 countries/regions of eigenvector centrality of nodes in all stages |
国家/地区节点 | 阶段1 | 阶段2 | 阶段3 | 阶段4 | 阶段5 | 阶段6 |
---|---|---|---|---|---|---|
中国 | 1 | 1 | 1 | 1 | 1 | 1 |
加纳 | 0.8415 | 0.8597 | 0.9203 | 0.9378 | 0.9718 | 0.9627 |
越南 | 0.8142 | 0.8760 | 0.8854 | 0.8994 | 0.9058 | 0.8989 |
日本 | 0.7853 | 0.8575 | 0.8974 | 0.9039 | 0.9366 | 0.9235 |
阿联酋 | 0.7120 | 0.7717 | 0.8309 | 0.9141 | 0.9711 | 0.9517 |
韩国 | 0.6882 | 0.7436 | 0.7872 | 0.8350 | 0.8797 | 0.8826 |
新西兰 | 0.6643 | 0.6469 | 0.7302 | 0.7592 | 0.7788 | 0.7684 |
印尼 | 0.6572 | 0.7585 | 0.8177 | 0.8546 | 0.8870 | 0.8872 |
白俄罗斯 | 0.6175 | 0.6822 | 0.7025 | 0.7381 | 0.7782 | 0.7631 |
加拿大 | 0.6056 | 0.5953 | 0.5904 | 0.5876 | 0.6135 | 0.6081 |
牙买加 | 0.6038 | 0.6198 | 0.6708 | 0.7055 | 0.7246 | 0.7347 |
阿塞拜疆 | 0.5984 | 0.6883 | 0.7702 | 0.7823 | 0.8181 | 0.8070 |
新加坡 | 0.5921 | 0.7068 | 0.7547 | 0.7863 | 0.8305 | 0.8229 |
巴西 | 0.5908 | 0.6728 | 0.6794 | 0.6832 | 0.7048 | 0.7149 |
哈萨克斯坦 | 0.5903 | 0.6272 | 0.6358 | 0.6678 | 0.7150 | 0.7485 |
表5 全阶段全社区点要素R指数计算结果Tab. 5 Calculation results of R index of points in all communities and all stages |
社区1 | 社区2 | 社区3 | 社区4 | 社区5 | 社区6 | 社区7 | 社区8 | 社区9 | 社区10 | 社区11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
时态1 | 3.7370 | 5.8760 | 1.8876 | 2.8142 | 2.2665 | 2.6595 | 1.2114 | 2.4467 | - | - | - |
时态2 | 4.1556 | 5.8209 | 0.1930 | 1.2757 | 2.9691 | 2.8950 | 1.3085 | - | 2.7277 | 0.1247 | - |
时态3 | 4.0709 | 5.9191 | - | - | 2.8248 | 2.5899 | 1.2699 | - | 2.8441 | 0.1247 | 1.1964 |
时态4 | 3.7409 | 5.8768 | - | - | 3.0089 | 2.3417 | 1.2699 | - | 3.3367 | 0.1247 | 1.1924 |
时态5 | 3.7147 | 5.7252 | - | - | 2.9971 | 2.2898 | 1.7649 | - | 3.3367 | 0.1247 | 1.2112 |
表6 特征向量中心度空间相关分析Tab. 6 Spatial correlation analysis of eigenvector centrality |
阶段1 | 阶段2 | 阶段3 | 阶段4 | 阶段5 | 阶段6 | |
---|---|---|---|---|---|---|
Z值 | 1.7021 | 0.7948 | 0.3981 | 0.7459 | 0.8178 | 0.9160 |
P值 | 0.0887 | 0.4267 | 0.6905 | 0.4557 | 0.4134 | 0.3596 |
Moran's I指数 | 0.0393 | 0.0156 | 0.0052 | 0.0144 | 0.0162 | 0.0188 |
[1] |
王缉思. 当代世界政治发展趋势与中国的全球角色[J]. 北京大学学报(哲学社会科学版), 2009,46(1):11-14.
[
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
刘乐. 社会网络与“伊斯兰国”的战略动员[J]. 外交评论:外交学院学报, 2016(2):82-109.
[
|
[9] |
史超亚, 高湘昀, 孙晓奇, 等. 复杂网络视角下的国际铝土矿贸易演化特征研究[J]. 中国矿业, 2018,27(1):57-62.
[
|
[10] |
刘志高, 王涛, 陈伟. 中国崛起与世界贸易网络演化:1980—2018年[J]. 地理科学进展, 2019,38(10):1596-1606.
[
|
[11] |
沈石, 袁丽华, 叶思菁, 等. 近40年中美地缘政治关系波动及背景解析[J]. 地理科学, 2019,39(7):1063-1071.
[
|
[12] |
陈小强, 袁丽华, 沈石, 等. 中国及其周边国家间地缘关系解析[J]. 地理学报, 2019,74(8):1534-1547.
[
|
[13] |
秦昆, 罗萍, 姚博睿. GDELT数据网络化挖掘与国际关系分析[J]. 地球信息科学学报, 2019,21(1):14-24.
[
|
[14] |
张琪. 地缘经济视角下中美贸易战的动因分析[D]. 南京:南京大学, 2019.
[
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
360金融APP研究中心. 不见硝烟的“世界大战”—贸易战完整时间轴[EB/OL]. https://www.sohu.com/a/321776027_718262.
[ 360 financial APP research center. The “world war” without smoke-a trade war full timeline [EB/OL]. https://www.sohu.com/a/321776027_718262. ]
|
[20] |
|
[21] |
|
[22] |
|
[23] |
廉德瑰. 中美贸易战与日美贸易摩擦及同盟悖论[J]. 亚太安全与海洋研究, 2020(1):14-26,2.
[
|
[24] |
包善良. 中美贸易争端的演进过程,动因及发展趋势[J]. 国际关系研究, 2018(4):56-76, 154-155.
[
|
[25] |
|
[26] |
张超, 杨秉赓. 计量地理学基础(第二版)[M]. 北京: 高等教育出版社I, 1991.
[
|
[27] |
|
[28] |
新华网. 综合消息:一次掀开两国关系新篇章的重要访问-意大利各界高度评价习近平主席国事访问成果[EB/OL]. http://www.xinhuanet.com/2019-03/25/c_112427592, 20 19-03-25.
[ Xinhuanet. Comprehensive news: an important visit chapters the relations between the two countries - Italy from all walks of life highly of Xi Jinping, chairman of the state visit results [EB/OL]. http://www.xinhuanet.com/2019-03/25/c_112427592, 20 19-03-25. ]
|
[29] |
新华网. 习近平会见意大利总理孔特[EB/OL]. http://www.xinhuanet.com/politics/2019-04/27/c_1124425202.htm,2019-04-27.
[ Xinhua. Xi Jinping met with Italian prime minister Conte, [EB/OL]. http://www.xinhuanet.com/politics/2019-04/27/c_1124425202.htm, 2019-04-27.]
|
[30] |
百度百科. 孟晚舟事件[EB/OL]. https://baike.baidu.com/item/孟晚舟事件/23192657#1,2020-01-07.
[ Baidu encyclopedia. Meng wanzhou event[EB/OL]. https://baike.baidu.com/item/孟晚舟事件/23192657#1,2020-01-07. ]
|
/
〈 | 〉 |