基于DTW与K-means算法的河北场雨及雨型分区特征研究
李雨欣(1996— ),女,浙江宁波人,博士,主要从事灾害风险评估研究。E-mail:lyx2019@mail.bnu.edu.cn |
收稿日期: 2020-07-03
要求修回日期: 2020-09-18
网络出版日期: 2021-07-25
基金资助
国家重点研发计划项目(2017YFC1502505)
版权
Research on the Characteristics of Rainfall Events and Rain Pattern Zoning in Hebei based on Data Mining Technology
Received date: 2020-07-03
Request revised date: 2020-09-18
Online published: 2021-07-25
Supported by
National Key R&D Program of China(2017YFC1502505)
Copyright
深入挖掘气象站点的观测降雨数据,研究区域降雨的雨型规律,对于洪涝灾害预警和减灾措施制订有重要意义。本文基于河北省2005—2017年3189个站点逐小时降雨观测数据,进行“场雨”的划定,进而提取历史上各场雨的累积雨量、时长指标。采用数据挖掘技术中的DTW相似性算法进行场雨雨型的自动归类,将场雨分成Ⅰ—Ⅶ共7种雨型,包括峰值在前、中、后期的3种单峰型降雨,以及3种双峰型降雨和均匀型降雨,结果显示:河北降雨过程以Ⅰ型前期单峰值降雨、Ⅲ型中期单峰值降雨居多,二者占总降雨场次的70%以上,但空间分布上存在差异;通过K-means聚类,将河北地区分成3个雨型区:① 区, Ⅰ型和Ⅲ型降雨为主,分布在燕山丘陵气候区、冀东平原气候区和山前平原气候区。② 区,Ⅲ型、Ⅰ型、Ⅵ型、Ⅶ型降雨并重,在冀北高原气候区,承德市南部等分散分布。③ 区,Ⅲ型降雨为主,主要分布在石家庄市南部、邯郸市、邢台市大部分地区。本文将DTW相似性算法和K-means聚类方法相结合的数据挖掘技术,可以在未来的气象大数据分析中得到更多的应用。
李雨欣 , 王瑛 , 马庆媛 , 刘天雪 , 司丽丽 , 俞海洋 . 基于DTW与K-means算法的河北场雨及雨型分区特征研究[J]. 地球信息科学学报, 2021 , 23(5) : 860 -868 . DOI: 10.12082/dqxxkx.2021.200343
In-depth data mining of rainfall data and characterizing the rainfall events from meteorological records play an important role in formulation of flood disaster warning and mitigation measures. This paper analyzed a large number of hourly rainfall observations to quantify the rainfall pattern, cumulative rainfall, duration, and other indicators of rainfall events in Hebei province. First, we generated independent rainfall events based on the hourly precipitation data of 3189 stations in Hebei from 2005 to 2017. We counted the rainfall events for each station by calculating the time interval between rainfall events. Rainfall events with time interval less than 6h were counted as a single rainfall event. Otherwise, they were regarded as independent rainfall events. Then, we calculated the occurrence time, end time, duration, hourly accumulation, and total accumulation of each rainfall event. Finally, rainfall events were divided into seven types (I-Ⅶ), including three types of single-peak rainfall (i.e. single peak in the front, middle, and end), three types of double-peak rainfall, and uniform rainfall. The Dynamic Time Warping (DTW) algorithm was used for rainfall events classification. The results show that the rainfall in Hebei province was dominated by typeⅠ (single-peak rainfall in the front) and type Ⅲ (single-peak rainfall in the middle), which accounted for more than 70% of the total rainfall events with a significant spatial variation. The type Ⅳ (uniform rainfall) was the least with a proportion of less than 5%. The type Ⅱ (single-peak rainfall in the end) and three types of double-peak rainfall accounted for less than 25%. Through K-means clustering, the Hebei province was divided into 3 rain-type regions: district A, with type I and type Ⅲ rainfall mainly distributed in the Yanshan hilly climate region, the eastern Hebei plain climate region, and the piedmont plain climate region; district B, with type Ⅲ, type Ⅰ, type Ⅵ, and type Ⅶ rainfall scattered in the northern Hebei plateau climate zone and southern Chengde city; and district C, with type Ⅲ rainfall dominated in the southern part of Shijiazhuang City, Handan City, and most of Xingtai City. In this paper, the data mining method that combines DTW similarity algorithm and K-means clustering can be applied in future meteorological big data analysis.
Key words: field rain; rainfall type; data mining; DTW; K-means clustering; rainstorm disaster; zoning; Hebei
表1 2005—2017年河北省7种雨型的场雨数量(按站点统计)Tab. 1 Number of rain events for 7 rain types in Hebei from 2005 to 2017 (statistics by station) |
雨型 | |||||||
---|---|---|---|---|---|---|---|
Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | Ⅵ | Ⅶ | |
数量/个 | 58 300 | 7893 | 128 932 | 522 | 2485 | 20 070 | 23 660 |
比例/% | 24.10 | 3.26 | 53.31 | 0.22 | 1.03 | 8.30 | 9.78 |
表2 2005—2017年河北三大雨型区的雨型统计Tab. 2 Rain type statistics of the three major areas in Hebei from 2005 to 2017 |
分区名称 | 站点数/个 | 雨型 | |||||||
---|---|---|---|---|---|---|---|---|---|
Ⅰ型 | Ⅱ型 | Ⅲ型 | Ⅳ型 | Ⅴ型 | Ⅵ型 | Ⅶ型 | |||
① 区 | 1620 | 数量/个 | 33 899 | 4062 | 66 669 | 271 | 1340 | 10 569 | 11 747 |
比例/% | 26.37 | 3.16 | 51.86 | 0.21 | 1.04 | 8.22 | 9.14 | ||
② 区 | 531 | 数量/个 | 9115 | 1607 | 19 086 | 102 | 535 | 3747 | 4521 |
比例/% | 23.55 | 4.15 | 49.30 | 0.26 | 1.38 | 9.68 | 11.68 | ||
③ 区 | 1038 | 数量/个 | 15 195 | 2168 | 43 306 | 162 | 584 | 5728 | 7449 |
比例/% | 20.37 | 2.91 | 58.06 | 0.22 | 0.78 | 7.68 | 9.99 |
表3 河北省历史暴雨的雨型与灾情对照Tab. 3 Comparison of rain types and heavy rain disasters in Hebei |
雨型分区 | 场雨信息 | 灾情信息 | |||||||
---|---|---|---|---|---|---|---|---|---|
地市 | 区县 | 开始时间 | 历时/h | 雨型 | 累积量/mm | 死亡人数/人 | 受灾面积/hm2 | 直接经济损失/万元 | |
① | 保定市 | 定州市 | 2013060711 | 10 | Ⅰ | 97.2 | 1 | 3950.3 | 2735.1 |
沧州市 | 黄骅市 | 2010071811 | 20 | Ⅲ | 133.4 | 0 | 2700 | 3700 | |
衡水市 | 冀州市 | 2013081403 | 6 | Ⅰ | 30.8 | 0 | 6730 | 21 145 | |
秦皇岛市 | 抚宁县 | 2012072601 | 12 | Ⅲ | 52.8 | 2 | 2295 | 2750.5 | |
唐山市 | 玉田县 | 2006081003 | 8 | Ⅲ | 133.1 | 0 | 22 400 | 2341 | |
唐山市 | 玉田县 | 2009072218 | 2 | Ⅰ | 38.3 | 1 | 7377 | 2266 | |
张家口市 | 赤城县 | 2007070314 | 4 | Ⅰ | 16.4 | 6 | 2000 | 568 | |
② | 承德市 | 丰宁县 | 2006062819 | 11 | Ⅶ | 32.0 | 0 | 711 | 746 |
承德市 | 丰宁县 | 2009082623 | 1 | Ⅲ | 16.2 | 0 | 1267 | 1160 | |
邯郸市 | 武安市 | 2010080416 | 5 | Ⅰ | 48.2 | 0 | 343.3 | 210 | |
秦皇岛市 | 昌黎县 | 2012072603 | 11 | Ⅲ | 38.2 | 0 | 9409 | 6082.4 | |
石家庄市 | 平山县 | 2009080101 | 3 | Ⅰ | 24.4 | 0 | 3202 | 1538.4 | |
邢台市 | 临西县 | 2013071522 | 4 | Ⅵ | 28.9 | 0 | 1413 | 973 | |
③ | 保定市 | 唐县 | 2011082504 | 10 | Ⅲ | 27.8 | 0 | 1128 | 2980 |
沧州市 | 盐山县 | 2010071910 | 20 | Ⅲ | 155.9 | 0 | 1100 | 417 | |
衡水市 | 武强县 | 2013070113 | 12 | Ⅲ | 143.9 | 0 | 919 | 1000 | |
秦皇岛市 | 青龙县 | 2012072518 | 15 | Ⅲ | 49.9 | 0 | 4000 | 3500 | |
石家庄市 | 赞皇县 | 2009082600 | 11 | Ⅲ | 28.2 | 0 | 590 | 720 | |
邢台市 | 新河县 | 2013070116 | 11 | Ⅲ | 136.1 | 0 | 540.6 | 647.1 |
[1] |
国家气候中心. GB/T 33680-2017,暴雨灾害等级[S]. 北京: 中国标准出版社, 2017.
[ National Climate Center. GB/T 33680-2017, Rainstorm disaster level[S]. Beijing: Standard Press of China, 2017. ]
|
[2] |
|
[3] |
莫洛科夫. 雨水道与合流水道[M]. 北京: 建筑工程出版社, 1959.
[
|
[4] |
岑国平, 沈晋. 城市设计暴雨雨型研究[J]. 水科学进展, 1998,9(1):41-46.
[
|
[5] |
|
[6] |
|
[7] |
|
[8] |
张兴奇, 徐鹏程, 顾璟冉. SCS模型在贵州省毕节市石桥小流域坡面产流模拟中的应用[J]. 水土保持通报, 2017,37(3):321-328,333.
[
|
[9] |
殷水清, 王杨, 谢云, 等. 中国降雨过程时程分型特征[J]. 水科学进展, 2014,25(5):617-624.
[
|
[10] |
银磊, 陈晓宏, 陈志和, 等. 广州市典型雨量站暴雨雨型研究[J]. 水资源研究, 2013,2(6):409-414.
[
|
[11] |
|
[12] |
何清, 李宁, 罗文娟, 等. 大数据下的机器学习算法综述[J]. 模式识别与人工智能, 2014,27(4):327-336.
[
|
[13] |
|
[14] |
李进讷. 基于DSCAN优化算法与决策树优化算法的气象时空数据挖掘技术研究[D]. 昆明:云南大学, 2018.
[
|
[15] |
李正欣, 郭建胜, 王瑛, 等. DTW距离的过滤搜索方法[J]. 控制与决策, 2018,33(7):1277-1281.
[
|
[16] |
|
[17] |
王彬雁, 赵琳娜, 巩远发, 等. 北京降雨过程分型特征及短历时降雨重现期研究[J]. 暴雨灾害, 2015,34(4):302-308.
[
|
[18] |
吴焕丽, 崔可旺, 张馨, 等. 基于改进K-means图像分割算法的细叶作物覆盖度提取[J]. 农业机械学报, 2019,50(1):42-50.
[
|
[19] |
|
[20] |
《河北省气象灾害风险地图集》编辑委员会. 河北省气象灾害风险地图集[M]. 北京: 科学出版社, 2018.
[ Editorial committee of the Atlas of meteorological disaster risk in Hebei province. Atlas of meteorological disaster risk in Hebei province[M]. Beijing: Science Press, 2018. ]
|
/
〈 |
|
〉 |