空间同位模式支持下城市服务业关联发现及特征分析
胡 添(1995— ),男,吉林敦化人,硕士生,主要从事城市数据挖掘研究。E-mail: 1316898338@qq.com |
收稿日期: 2021-07-29
要求修回日期: 2021-11-04
网络出版日期: 2021-08-25
基金资助
国家重点研发计划课题项目(2016YFC0803106)
国家自然科学基金项目(41761088)
兰州交通大学优秀平台支持(201806)
版权
Correlation Discovery and Feature Analysis of Urban Service Industry Supported by Spatial Co-location Model
Received date: 2021-07-29
Request revised date: 2021-11-04
Online published: 2021-08-25
Supported by
National Key Research and Development Program of China(2016YFC0803106)
National Natural Science Foundation of China(41761088)
Lanzhou Jiaotong University Excellent Platform (LZJTU EP)(201806)
Copyright
空间同位模式分析是数据挖掘中一种常见的方法,可有效挖掘城市设施在空间位置上的关联特征,进而发现城市设施的分布规律。本文基于POI数据同位模式挖掘用来获取城市服务业空间关联结构:首先,通过邻近实例获取、同位候选模式存储与筛选,得到城市服务业二阶同位模式;然后,据此构造产业空间关联图,得到产业间的关联结构;最后,分别构造了产业空间关联图密度和产业空间关联显著指数,用来衡量城市服务业空间关联的紧密程度和整体关联的显著程度。本文选取成都、兰州、郑州、沈阳、上海与深圳为试验区,实验结果表明:不同城市服务业的空间关联结构存在共性与特殊性,整体上,餐饮、购物等与居民日常生活相关的服务业易与其他服务业产生空间强相关,这几类服务业内部空间集聚明显;成都与沈阳的服务业整体表现空间关联度高且紧密,兰州其次,上海与深圳的服务业则整体表现空间关联较弱,郑州的服务业空间关联较紧密但强度较低。
胡添 , 刘涛 , 杜萍 , 余贝贝 , 张萌生 . 空间同位模式支持下城市服务业关联发现及特征分析[J]. 地球信息科学学报, 2021 , 23(6) : 969 -978 . DOI: 10.12082/dqxxkx.2021.200408
Spatial co-location mode analysis has been commonly used in data mining, which can be used to characterize the correlation between different urban service facilities and further quantify the distribution pattern of urban service industry. In this paper, a co-location pattern mining method with POI data is proposed to obtain the spatial correlation of urban service industry. Firstly, through the acquisition of neighboring instances, and selection and storage of homology candidate patterns, the second-order homology pattern of urban service industry can be obtained; Secondly, the industrial spatial correlation map is constructed to obtain the correlation structure between industries. Finally, the industrial spatial correlation graph density and spatial correlation significance are constructed to measure the tightness of urban service industry relationship. We select Chengdu, Lanzhou, Zhengzhou, Shenyang, Shanghai, and Shenzhen as experimental areas. The results show that there are both similarities and differences in the spatial correlation of urban service industry in different cities. Generally, service industries such as catering and shopping which are related to daily life have a strong spatial correlation with other service industries. These types of service industry are often spatially clustered. The administrative department has a weak spatial correlation with other service industries and often occupies a separate functional area. Based on the results of the co-location pattern mining for each city, we find that the co-location pattern between teahouses and residential areas is strong in Chengdu, which indicates a unique "tea culture". In Shanghai, foreign restaurants and leisure places show a co-location pattern, which indicates the internationalization characteristic of Shanghai. Both Chengdu and Shenyang show the strongest spatial correlation of service industry which is highly mixed. The spatial correlation of service industry in Lanzhou is moderate. While Shanghai and Shenzhen show the weakest spatial correlation of service industry. These two cities have a high-level economic development and show separated industrial zones. Zhengzhou also has a weak spatial correlation because of its "multi-center, group-like" structure. This paper uses the spatial co-location model to characterize the spatial correlation of the urban service industry, which can be used as references for future urban planning.
表1 城市服务业类别划分Tab. 1 Classification of urban service industries |
一级分类 | 二级分类 |
---|---|
餐饮住宿 | 宾馆酒店、茶馆、糕饼店、咖啡馆、快餐厅、奶茶店、外国餐厅、中餐厅 |
房地产业 | 楼宇、住宅区 |
公共管理 | 工商税务机构、公检法机构 |
金融保险 | 保险公司、财务公司、银行、证券公司 |
居民服务 | 便利店、超级市场、加油站、美容美发店、商场、药店、综合市场 |
科学教育 | 大学、科研机构、小学、幼儿园、中学 |
体育休闲 | 休闲场所、娱乐场所、运动场馆 |
信息科技 | 电信公司、网络科技 |
医疗健康 | 医院、诊所 |
运输存储 | 物流仓储场地、物流速递 |
表2 6个城市同位模式挖掘结果Tab. 2 Mining results of co-location patterns in six cities |
城市 | 二阶空间同位规则 | PI值 |
---|---|---|
成都 | {便利店}<=>{美容美发店} | 0.89 |
{住宅区}<=>{便利店} | 0.88 | |
{诊所}<=>{便利店} | 0.87 | |
{茶馆}<=>{住宅区} | 0.84 | |
{宾馆酒店}<=>{快餐厅} | 0.82 | |
兰州 | {大学}<=>{超级市场} | 0.76 |
{中餐厅}<=>{快餐厅} | 0.74 | |
{药店}<=>{美容美发店} | 0.74 | |
{小学}<=>{综合市场} | 0.73 | |
{中餐厅}<=>{娱乐场所} | 0.72 | |
郑州 | {中餐厅}<=>{快餐厅} | 0.81 |
{中餐厅}<=>{综合市场} | 0.75 | |
{财务公司}<=>{证券公司} | 0.75 | |
{宾馆酒店}<=>{快餐厅} | 0.73 | |
{中餐厅}<=>{奶茶店} | 0.72 | |
沈阳 | {快餐厅}<=>{便利店} | 0.85 |
{便利店}<=>{美容美发店} | 0.83 | |
{娱乐场所}<=>{便利店} | 0.81 | |
{便利店}<=>{药店} | 0.81 | |
{便利店}<=>{住宅区} | 0.80 | |
上海 | {中餐厅}<=>{快餐厅} | 0.72 |
{快餐厅}<=>{大学} | 0.71 | |
{外国餐厅}<=>{休闲场所} | 0.70 | |
{中餐厅}<=>{大学} | 0.70 | |
{中餐厅}<=>{楼宇} | 0.70 | |
深圳 | {宾馆酒店}<=>{快餐厅} | 0.83 |
{便利店}<=>{药店} | 0.82 | |
{快餐厅}<=> 便利店} | 0.81 | |
{奶茶店}<=>{快餐厅} | 0.80 | |
{中餐厅}<=>{宾馆酒店} | 0.80 |
[1] |
申玉铭, 吴康, 任旺兵. 国内外生产性服务业空间集聚的研究进展[J]. 地理研究, 2009,28(6):1494-1507.
[
|
[2] |
郑宇. 城市计算概述[J]. 武汉大学学报·信息科学版, 2015,40(1):1-13.
[
|
[3] |
邱灵, 方创琳. 北京市生产性服务业空间集聚综合测度[J]. 地理研究, 2013,32(1):99-110.
[
|
[4] |
王慧, 吴晓, 强欢欢. 南京市主城区就业空间布局初探[J]. 经济地理, 2014,34(6):115-123.
[
|
[5] |
李江苏, 梁燕, 王晓蕊. 基于POI数据的郑东新区服务业空间聚类研究[J]. 地理研究, 2018,37(1):145-157.
[
|
[6] |
禹文豪, 艾廷华, 杨敏, 等. 利用核密度与空间自相关进行城市设施兴趣点分布热点探测[J]. 武汉大学学报·信息科学版, 2016,41(2):221-227.
[
|
[7] |
王腾, 王艳东, 赵晓明, 等. 顾及道路网约束的商业设施空间点模式分析[J]. 武汉大学学报·信息科学版, 2018,43(11):1746-1752.
[
|
[8] |
石秀, 景睿, 郑刚, 等. 基于专利数据的中国新能源汽车技术创新的区域分布特征分析[J]. 工业技术经济, 2018,37(8):60-67.
[
|
[9] |
廖伟华, 聂鑫. 基于大数据的城市服务业空间关联分析[J]. 地理科学, 2017,37(9):1310-1317.
[
|
[10] |
|
[11] |
|
[12] |
蔡建南, 刘启亮, 徐枫, 等. 多层次空间同位模式自适应挖掘方法[J]. 测绘学报, 2016,45(4):475-485.
[
|
[13] |
范协裕, 陈瀚阅, 刑世和. 连续变量的自适应局部空间同位模式挖掘算法[J]. 地球信息科学学报, 2016,18(7):902-909.
[
|
[14] |
|
[15] |
艾廷华, 周梦杰, 李晓明. 网络空间同位模式的加色混合可视化挖掘方法[J]. 测绘学报, 2017,46(6):753-759.
[
|
[16] |
|
[17] |
许泽宁, 高晓路. 基于电子地图兴趣点的城市建成区边界识别方法[J]. 地理学报, 2016,71(6):928-939.
[
|
[18] |
国家统计局. GB/T 4754-2017国民经济行业分类[S]. 北京: 标准出版社, 2017.
[ National Bureau of Statistics. GB/T 4754-2017 Industrial classification for national economic activities[S]. Beijing: Standards Press of China, 2017. ]
|
[19] |
康顺, 李佳田, 武昊. Voronoi邻近关系支持下的点模式趋同提取方法[J]. 测绘学报, 2017,46(5):649-657.
[
|
[20] |
|
[21] |
|
[22] |
苏奋振, 杜云艳, 杨晓梅, 等. 地学关联规则与时空推理的渔业分析应用[J]. 地球信息科学学报, 2004,6(4):66-70.
[
|
[23] |
谭浩. 同位模式空间数据挖掘算法研究及在GIS中的应用[D]. 长沙:中南大学, 2011.
[
|
[24] |
|
[25] |
|
/
〈 |
|
〉 |