基于多源数据的旅游者视觉行为模式与感知评估方法
李渊(1979—),男,湖北荆门人,教授,博导,主要从事旅游者时空行为、遗产空间感知与计算研究。E-mail: liyuan79@xmu.edu.cn |
收稿日期: 2021-12-30
修回日期: 2022-02-28
网络出版日期: 2022-12-25
基金资助
国家自然科学基金项目(42171219)
福建省自然科学基金项目(2020J01011)
A New Approach for Tourists' Visual Behavior Patterns and Perception Evaluation based on Multi-source Data
Received date: 2021-12-30
Revised date: 2022-02-28
Online published: 2022-12-25
Supported by
National Natural Science Foundation of China(42171219)
Fujian Natural Science Foundation Project(2020J01011)
用户生成内容(User Generated Content,UGC)作为感知旅游地物质空间的新型地理大数据,以使用者的视角描绘了旅游地的客观环境,是探索旅游目的地感知的重要途径。然而,传统的旅游研究对旅行摄影照片处理能力有限,深度学习图像语义分割技术的发展,为挖掘旅游者视觉行为模式,探索旅游地环境感知提供了有力支持。本研究提出了整合在线旅行照片大数据与问卷调查小数据的旅游者视觉行为模式与感知评估框架,并将其应用于鼓浪屿案例。首先将744条旅游轨迹,聚类为6类视觉行为模式,并可视化与时空分析;其次基于全卷积网络算法,量化22 507张旅行照片语义,探索不同视觉模式的旅游者关注要素的空间分异;最后通过照片语义与场景感知问卷调查的相关性分析和多重线性回归模型,评估旅游地整体视觉感知满意度,并提出相应的空间优化建议。研究表明:① 鼓浪屿旅游者视觉行为模式聚类为单点游、海岛风光游、环岛游、街巷空间游、遗产建筑游和全岛游6类;② 不同视觉行为模式的旅游者视觉兴趣区存在空间集聚现象,视觉空间转移遵循地理邻近效应;③ 相关性分析与模型结果表明,旅游者偏好空间开敞度较高的区域,感知满意度越低的区域摄影行为越少,是环境提升的重点;④ 出行时间和成本效率最大化、建成环境、心理环境与社会环境是影响旅游者视觉感知的主要因素。本研究延伸了人工智能技术在旅游者视觉感知研究中的应用,为旅游地空间优化提供参考。
李渊 , 郭晶 , 陈一平 . 基于多源数据的旅游者视觉行为模式与感知评估方法[J]. 地球信息科学学报, 2022 , 24(10) : 2004 -2020 . DOI: 10.12082/dqxxkx.2022.210840
User Generated Content (UGC), as a new type of geographic big data for perceiving the physical space of tourism destination, depicts the objective environment of tourism destination from the perspective of users, which is an important way to explore the perception of tourism destination. However, the traditional tourism research has limited ability to deal with travel photos. The development of deep learning image semantic segmentation technology provides strong support for mining tourists' visual behavior patterns and exploring tourism destination environmental perception. This study proposes a framework for tourists' visual behavior model and perception evaluation, which integrates the big data of online travel photos and small data of questionnaire survey, and applies it to the case of Gulangyu Island. Firstly, 744 tourism trajectories are clustered into six types of visual behavior patterns, and visualized and spatiotemporal analysis is carried out; Secondly, based on the full convolution network algorithm, the semantics of 22 507 travel photos are quantified to explore the spatial differentiation of the elements concerned by tourists with different visual modes; Finally, through the correlation analysis of photo semantics and scene perception questionnaire and the multiple linear regression model, the overall visual perception satisfaction of tourism destination is evaluated, and the corresponding spatial optimization suggestions are put forward. The results show that: (1) the visual behavior patterns of tourists on Gulangyu Island are clustered into six categories: single point tour, island scenery tour, around the island tour, street and lane space tour, heritage building tour, and whole island tour; (2) Tourists with different visual behavior patterns have spatial agglomeration in their visual interest areas, and the transfer of visual space follows the geographical proximity effect; (3) The results of correlation analysis and model show that tourists prefer areas with high spatial openness, and the areas with lower perceived satisfaction have less photography behavior, which is the focus of environmental improvement; (4) Maximizing travel time and cost efficiency, built environment, psychological environment, and social environment are the main factors affecting tourists' visual perception. This study extends the application of artificial intelligence technology in the study of tourists' visual perception, and provides a reference for tourism destination spatial optimization.
图4 鼓浪屿风貌分区与旅游者拍摄点、街景采样点GPS分布Fig. 4 GPS distribution map of Gulangyu Island landscape zoning, tourist photography points and street view sampling points |
表1 鼓浪屿风貌分区Tab. 1 Landscape zoning of Gulangyu Island |
风貌区编号 | 风貌区 | 空间单元 |
---|---|---|
A | 旅游商业区 | A1、A2、A3、A4、A5 |
B | 滨海风景区 | B1、B2、B3 |
C | 北部森林区 | C |
D | 内厝澳社区 | D1、D2、D3 |
E | 遗产建筑区 | E1、E2、E3、E4、E5、E6 |
表2 数据来源与类型描述表Tab. 2 Data source and type description |
数据类型 | 数据来源 | 数据格式 | 初始样本/个 | 处理后样本/个 | 有效率/% | 数据时间 |
---|---|---|---|---|---|---|
大数据 | 两步路、六只脚 | 照片 | 26 422 | 22 507 | 85.18 | 2007年11月—2021年9月 |
GPS轨迹 | 984 | 744 | 75.61 | |||
小数据 | 街景采样 | 照片 | 793 | 777 | 97.98 | 2021年9月 |
问卷调查 | 量表 | 360 | 354 | 98.33 | 2021年9月 |
表3 视觉行为模式聚类统计表Tab. 3 Clustering statistics of photographic behavior chain types (个) |
视觉行为 模式 | 摄影轨迹链 数量 | 照片 数量 | 单条轨迹平均 照片数量 |
---|---|---|---|
单点游 | 177 | 845 | 4.77 |
海岛风光游 | 209 | 3116 | 14.91 |
环岛游 | 76 | 788 | 10.37 |
街巷空间游 | 123 | 5125 | 41.67 |
遗产建筑游 | 60 | 2868 | 47.80 |
全岛游 | 99 | 9657 | 97.55 |
表4 旅游者视觉感知要素的多重线性回归分析Tab. 4 Multiple linear regression analysis of tourists' visual perception factors |
因变量 | 自变量 | 标准系数 | t | 累积R² | 方差膨胀因子 | 容忍度 |
---|---|---|---|---|---|---|
视觉感知满意度 | 地板 | -0.814 | -7.265*** | 0.731 | 1.028 | 0.972 |
建筑 | -0.429 | -3.824** | 0.939 | 1.028 | 0.972 |
注:显著性*p<0.1,**p<0.05,***p<0.01。 |
[1] |
白凯, 马耀峰, 游旭群. 基于旅游者行为研究的旅游感知和旅游认知概念[J]. 旅游科学, 2008(1):22-28.
[
|
[2] |
|
[3] |
吴志才, 张凌媛, 郑钟强, 等. 旅游场域中古城旅游社区的空间生产研究——基于列斐伏尔的空间生产理论视角[J]. 旅游学刊, 2019, 34(12):86-97.
[
|
[4] |
李渊, 杨璐, 高小涵. 鼓浪屿街道空间体验分析与提升策略[J]. 规划师, 2019, 35(14):24-31.
[
|
[5] |
张帆, 刘瑜. 街景影像——基于人工智能的方法与应用[J]. 遥感学报, 2021, 25(5):1043-1054.
[
|
[6] |
|
[7] |
|
[8] |
周功梅, 宋瑞, 刘倩倩. 旅游摄影:研究述评与展望[J]. 旅游学刊, 2020, 35(11):129-144.
[
|
[9] |
|
[10] |
Cederholm,
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
李渊, 刘嘉伟, 严泽幸, 等. 基于卫星定位导航数据的景区旅游者空间行为模式研究——以鼓浪屿为例[J]. 中国园林, 2019, 35(1):73-77.
[
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
李渊, 丁燕杰, 王德. 旅游者时间约束和空间行为特征的景区旅游线路设计方法研究[J]. 旅游学刊, 2016, 31(9):50-60.
[
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
厦门市人民政府. 鼓浪屿历史风貌建筑保护规划修编[R]. 2016:11-20.
[ Xiamen Municipal People's government. Revision of kulangsu historic building protection plan[R]. 2016:11-20. ]
|
[49] |
李道增. 环境行为学概论[M]. 北京: 清华大学出版社, 1999:10.
[
|
[50] |
塔娜, 柴彦威. 行为地理学的学科定位与前沿方向[J]. 地理科学进展, 2022, 41(1):1-15.
[
|
[51] |
乐阳, 刘瑜, 陈云松, 等. 空间和地理计算与计算社会学的融合路径[J]. 武汉大学学报·信息科学版, 2022, 47(1):1-18.
[
|
[52] |
杨敏, 李君轶, 徐雪. ICTs视角下的旅游流和旅游者时空行为研究进展[J]. 陕西师范大学学报(自然科学版), 2020, 48(4):46-55.
[
|
/
〈 |
|
〉 |