Most Viewed

  • Published in last 1 year
  • In last 2 years
  • In last 3 years
  • All

Please wait a minute...
  • Select all
    |
  • LU Feng, ZHU Yunqiang, ZHANG Xueying
    Journal of Geo-information Science. 2023, 25(6): 1091-1105. https://doi.org/10.12082/dqxxkx.2023.230154

    The continuous generalization of geographic information poses a huge challenge to the classic geographic information analysis modes. Networked knowledge services will gradually become a new mode for geographic information applications, facilitating to transform the form of geographic computing into social computing. Geographic knowledge services need to connect people, institutions, natural environments, geographical entities, geographical units and social events, so as to promote knowledge assisted data intelligence and computational intelligence. Facing the urgent need for spatiotemporal knowledge acquisition, formal expression and analysis, this paper firstly introduces the concepts and characteristics of spatiotemporal knowledge graph. The spatiotemporal knowledge graph is a directed graph composed of geographic spatiotemporal distribution or geo-locational metaphors of knowledge that is a knowledge graph centered on spatiotemporal distribution characteristics. Secondly we proposes a research framework for spatiotemporal knowledge graph. The framework includes various levels from multimodal spatiotemporal big data to spatiotemporal knowledge services that contain ubiquitous spatiotemporal big data layer, spatiotemporal knowledge acquisition technique layer, spatiotemporal knowledge management layer, spatiotemporal knowledge graph layer, software/tools layer, and industrial application layer. Thirdly this paper introduces relevant research progress from text implied geographic information retrieval, heterogeneous geographic semantic web alignment, spatiotemporal knowledge formalization and representation learning. Combined with application practice, we then enumerate the construction and application approaches of domain oriented spatiotemporal knowledge graph. Finally, it discusses the key scientific issues and technical bottlenecks currently faced in the research of spatiotemporal knowledge graph. It is argued that in the era of large models, constructing explicit spatiotemporal knowledge graph and conducting knowledge reasoning to meet domain needs is still the only way for spatiotemporal knowledge services.

  • ZHANG Xinchang, HUA Shuzhen, QI Ji, RUAN Yongjian
    Journal of Geo-information Science. 2024, 26(4): 779-789. https://doi.org/10.12082/dqxxkx.2024.240065

    The new smart city is an inevitable requirement for the development of urban digitalization to intelligence and further to wisdom, and is an important part of achieving high-quality development. This paper first introduces the background and basic concept of smart city, and analyzes the relationship and difference between the three stages of digital city, smart city and new smart city. Digital cities use computer networks, spatial information and virtual reality to digitize urban information, and focus on building information infrastructure. Smart cities, on the other hand, use spatio-temporal big data, cloud computing, and the Internet of Things to integrate systems across urban life, emphasizing intelligent management through a unified digital platform. New smart cities combine technologies such as digital twins, blockchain, and the meta-universe for citywide integration, and employ AI-based intelligent lifeforms for decision-making, blending real and virtual elements for advanced city management. This paper then explores the construction of new smart cities, focusing on high-quality urban development driven by technology and societal needs. It highlights the transition from digital to smart cities, emphasizing the role of information infrastructure and intelligent technology in this evolution. The paper discusses key technologies such as 3D urban modeling, digital twins, and the metaverse, and details their impact on urban planning and governance. It also examines how smart cities contribute to economic growth, meet national needs, and ensure public health and safety. The integration of technologies such as AI, IoT, and blockchain is shown to be critical to creating connected, efficient, and sustainable urban environments. The paper concludes by assessing the role of smart cities in measuring economic development, demonstrating their potential as a benchmark for national progress. Finally, based on the latest advances in AI technology, this paper analyzes and systematically looks forward to the key role AI can play in building new smart cities. AI's ability to analyze massive amounts of data, improve decision-making, and integrate various urban systems all provide important support for realizing the vision of a truly smart city ecosystem. With the synergy of "AI + IoT", "AI + Big Data", "AI + Big Models", and "AI + High Computing Power", the new smart cities are expected to achieve an unparalleled level of urban intelligence and ultimately a high quality of sustainable, efficient, and people-centered urban development.

  • JIANG Bingchuan, HUANG Zihang, REN Yan, SUN Yong, FAN Aimin
    Journal of Geo-information Science. 2023, 25(6): 1148-1163. https://doi.org/10.12082/dqxxkx.2023.220967

    The new combat style places new requirements for battlefield environment service support. The intelligent service of battlefield environment urgently needs to improve knowledge based on the global multidimensional battlefield environment data. In view of the knowledge modeling problem of intelligent cognition of battlefield environment, this paper puts forward the classification method of battlefield environment knowledge and considers the battlefield environment knowledge graph as a new form of battlefield environment knowledge representation under the context of big data and artificial intelligence. To solve the fragmentation problem of triplet knowledge representation, a temporal hypergraph representation model of battlefield environment is constructed, a multi-level unified graph model combining entity knowledge, event knowledge, influence process knowledge, and service decision-making knowledge is realized, and all kinds of knowledge are represented as a unified knowledge hypergraph network with spatiotemporal and scene characteristics. Finally, the experimental verification is carried out based on the data of map, event, impact process, and combat impact effectiveness. The hypergraph network realizes the correlation of various battlefield environment knowledge from the semantic level, which can provide support for the further realization of intelligent reasoning and service decision-making based on hypergraph.

  • ZHU Yunqiang, SUN Kai, HU Xiumian, LV Hairong, WANG Xinbing, YANG Jie, WANG Shu, LI Weirong, SONG Jia, SU Na, MU Xinglin
    Journal of Geo-information Science. 2023, 25(6): 1215-1227. https://doi.org/10.12082/dqxxkx.2023.210696

    Geoscience Knowledge Graph (GKG) has strong capabilities of knowledge representation and semantic reasoning, thereby becoming a required infrastructure for the development of geoscience big data and geoscience artificial intelligence. However, existing studies on GKG were mainly conducted under the experimental scenarios. Because of a lack of research on the general framework of construction methods, sharing, and application of large-scale GKG for practical applications, it has not been used in practical applications in the geoscience field. For this reason, towards the needs of research and applications of geoscience big data and artificial intelligence for GKG, this paper first studied the construction techniques of large-scale GKG. Then, a general framework for covering the lifecycle of GKG including its construction, sharing, and application was proposed. Taking the big science program “Deep-Time Digital Earth (DDE)” as an example, the practice of developing GKG platform towards the practical application of DDE was carried out. Using this platform, this paper realized the construction of DDE large-scale GKG, the open sharing and application of built GKG, proving that the proposed framework can effectively support the construction, sharing, and application of large-scale GKG. This paper plays an important role in promoting the realization of the practical application value of GKG.

  • HUANG Gaoshuang, ZHOU Yang, HU Xiaofei, ZHAO Luying, ZHANG Chenglong
    Journal of Geo-information Science. 2023, 25(7): 1336-1362. https://doi.org/10.12082/dqxxkx.2023.230073

    Image geo-localization is a technique that obtains the geographic location information of an image through a series of methods, so as to establish a mapping relationship with the real geographic space. This technique is important for further image information mining and has potential application value in cyberspace surveying and mapping, intelligence acquisition, user outdoor positioning, and augmented reality. Despite the tremendous progress in the field of computer vision, high-precision automatic geo-localization of images still needs to be addressed due to the involvement of multiple fields such as image feature extraction, large-scale data retrieval, large-scale point cloud processing, deep learning, geographic information feature extraction, geometric modeling and reasoning, semantic scene understanding, context-based reasoning, and multiple data fusion. This paper reviews the progress of image geo-localization research, mainly including image geo-localization methods, image geo-localization datasets, image geo-localization evaluation methods, and summary and prospect of image geo-localization. Firstly, image geolocation methods are classified into three categories, i.e., image retrieval, 2D-3D matching, and cross-modal retrieval, according to the relevance of the research content. Secondly, the datasets and evaluation methods used for image geo-localization research are categorized and summarized. The geo-localization datasets include image datasets, cross-view datasets, Structure from Motion (SfM) datasets, and multimodal datasets, etc. The image geo-localization evaluation metrics include Top-k candidates, localization error, position and orientation error per video frame, and accuracy/recall. Finally, the current status of image geo-localization research is analyzed, and the future research directions of image geo-localization are outlined in terms of global geo-localization, natural area geo-localization, multi-method fusion for geo-localization, Point of Interest (POI) data-based geo-localization, and pre-selected location refinement.

  • WU Qiong, LI Zhigang, WU Min
    Journal of Geo-information Science. 2023, 25(12): 2439-2455. https://doi.org/10.12082/dqxxkx.2023.230608

    Under the background of high-density urban areas and aging population in China, it is not only necessary but also urgent to strengthen the research on the design and construction of urban pocket parks. This paper uses CiteSpace, literature review, technical analysis and some other methods to conduct cluster analysis and comprehensive literature analysis on the study of urban pocket parks in China from 2000 to 2022. The results indicate that the current research hotspots in this field are pocket parks, roadside green space, landscaping, vest-pocket park, public space, landscape architecture, micro green spaces, street green land, design strategy, planning and design, etc. The research progress of pocket parks is divided into three stages: basic research (2000—2006), steady progress (2007—2018), and rapid development (2019—2022). In the basic research stage, the paper mainly studies the basic theories of street green space and vest-pocket park, which are the predecessor of the concept of pocket park, such as the development status at home and abroad, humanized design, and behavioral psychology, which lays a good foundation for the research of pocket park in China. In the stage of steady progress, the concept of pocket park is clearly proposed, the connotation of pocket park is interpreted, and the basic strategy of pocket park planning and landscape design is summarized. In the stage of rapid development, the research perspective turns to more micro aspects such as urban renewal, spatial layout of pocket park in the context of park city, optimization strategy, accessibility, fairness, interactivity, and comprehensive evaluation, etc. The research focus includes basic research, planning and design research, and evaluation research. The basic research has systematically sorted out and summarized the concept and connotation, construction scale, construction types, and usage functions of pocket parks. The planning and design research has extracted design strategies related to pocket parks from aspects such as spatial layout, landscape design, and elderly-oriented design. The evaluation research has evaluated the current situation of pocket parks from three aspects: social benefits, landscape benefits, and spatial structure. The development directions of urban pocket park research in our country in the future include: research on collaborative group layout of multiple pocket parks and optimization of internal spatial layout of a single pocket park, optimization of landscape facility layout, and plant configuration and optimization; research on the adaptability of pocket parks to the elderly, children, accessibility, and humanization according to the behavioral characteristics and psychological needs of residents, based on the theoretical foundations of environmental behavior and environmental psychology; systematically study on the coupling relationship between pocket parks and the natural environmental effects in the area by comprehensively applying architectural environmental theory, Remote Sensing (RS) technology, and Geographic Information System(GIS) technology; normative research on design guidelines, construction, operation and maintenance standard paradigms of pocket parks; research on digitization of pocket parks design and intelligent operation and maintenance management, as well as evaluation system, evaluation method and statistical analysis of pocket parks on this basis.

  • GAO Hanxin, CHEN Bo, SUN Hongquan, TIAN Yugang
    Journal of Geo-information Science. 2023, 25(10): 1933-1953. https://doi.org/10.12082/dqxxkx.2023.230060

    Being able to penetrate clouds and fog, Synthetic Aperture Radar (SAR) imagery has been widely used in flood mapping and flood detection regardless of time and weather condition. Improving the accuracy of flood maps retrieved from SAR images is of both scientific and practical significance. However, errors in SAR-derived flood maps can come from SAR image measuring principles, image acquisition and pre-processing system, water detection algorithms, and the remarkable temporal dynamics of the flooding process. The aim of this paper is to provide an extensive literature review of flood detection using SAR images (about 108 peer reviewed journal papers), including SAR data sources, flood detection methods, application of auxiliary information, accuracy evaluation, and challenges and opportunities for future research. Based on the articles reporting flood detection methods, it is found that the threshold segmentation methods such as the OTSU and KI algorithms are computationally fast and have been most widely used. The classification methods (e.g., the support vector machine and K-means clustering algorithms) have the flexibility to account for both subjectivity and objectivity, and the change detection method using the difference and ratio algorithms can effectively suppress over-detection and image geometric errors. Additionally, combining SAR images with four major types of auxiliary data to increase flood detection accuracy has become a hot topic in the past decades. Specifically, terrain information such as Digital Elevation Model (DEM), Height Above Nearest Drainage (HAND), and topographic slope can effectively reduce the impacts of shadows and exclude non-flooded areas. SAR image textural and multispectral optical information (e.g., Landsat data and aerial photos) can enhance the recognition ability of water features. Land cover/use data facilitate removing non-water features that are similar to water features, and hydrological data can help excluding permanent water bodies from temporary flood areas. From the perspectives of SAR image types, image preprocessing, detection algorithms, and accuracy assessment, major challenges are further discussed including insufficient understanding of the complexity of SAR backscattering information, limited progress in improving the signal-to-noise ratio during image pre-processing, lack of versatile flood detection algorithms, and low availability of high-quality verification data. While opportunities for future SAR-based flood detection research include combination of auxiliary information in detection algorithms, use of multiple rather than single threshold for water detection, and transition from deterministic toward probabilistic flood mapping.

  • WU Tianjun, LUO Jiancheng, LI Manjia, ZHANG Jing, ZHAO Xin, HU Xiaodong, ZUO Jin, MIN Fan, WANG Lingyu, HUANG Qiting
    Journal of Geo-information Science. 2024, 26(4): 799-830. https://doi.org/10.12082/dqxxkx.2024.230747

    With high quality development becoming the primary task of comprehensively building a socialist modernized country, the importance of geographic spatiotemporal information in supporting national and local socio-economic development has been raised to new heights. Based on the urgent need for high-quality development to empower geographic spatiotemporal information, this paper first comprehensively reviews the theoretical and methodological research status of geographic spatiotemporal expression and computation from the perspectives of complex land surface system expression, spatiotemporal uncertainty analysis, and geographic spatial intelligent computing. It is pointed out that there is an urgent need to update concepts, integrate across borders, and innovate technologies to improve the production level of spatiotemporal information products and assist in the high-quality transformation and development of social and economic activities in the three living spaces. Furthermore, driven by the problems of deconstructing complex land surface and analyzing precise parameters, we propose relevant theoretical thinking and research ideas of geographic spatiotemporal digital base (GST-DB) with an overview of basic concepts and technical points. The GST-DB is based on the uniqueness and distribution of time and space, and is proposed by three basic elements around brackets, containers, and engines. The paper focuses on analyzing three key scientific issues, including multiple representations and knowledge association for complex land surface systems, uncertainty analysis of spectral feature reconstruction under spatial form constraints, signal transmission and optimized control with the collaboration of satellite, ground, and human. The three key objectives, namely deconstruction of global space, analyticity of local space, and transferability between spaces, cut into the process of connecting the two-step process of spatial expression and parameter calculation, and further explain the difficulties and feasible solution paths of reliable expression, reliable analysis, and controllable computing. Through the analysis of the solution approach, the feasibility and necessity of the organic synergy of geoscientific analysis ideas, remote sensing mechanism knowledge, and machine intelligence algorithms are demonstrated. On this basis, this paper focuses on the monitoring and supervision of agricultural production as a demand-oriented problem for introducing agricultural application cases of GST-DB. Four types of application models for people, land, money, and things are preliminarily described. By demonstrating the construction process and implementation effectiveness of integrated intelligent computing, the advantages and basic supporting role of the base in carrying and utilizing spatiotemporal data elements are highlighted. This case study demonstrates the potential to provide high-quality spatiotemporal information services for the development of modern agriculture in complex mountain areas.

  • LÜ Guonian, YUAN Linwang, CHEN Min, ZHANG Xueying, ZHOU Liangchen, YU Zhaoyuan, LUO Wen, YUE Songshan, WU Mingguang
    Journal of Geo-information Science. 2024, 26(4): 767-778. https://doi.org/10.12082/dqxxkx.2024.240149

    Geographic Information Science (GIS) is not only the demand for the development of the discipline itself, but also the technical method to support the exploration of the frontiers of geography, earth system science and future geography, and the supporting technology to serve the national strategy and social development. In view of the intrinsic law of the development of geographic information science, the extrinsic drive of the development of related disciplines, and the pull of new technologies such as Artificial Intelligence (AI), this paper firstly analyses the development process of GIS and explores its development law from six dimensions, such as description content, expression dimension, expression mode, analysis method and service mode, etc.; then, on the basis of interpreting the original intention and goal of the development of geography, a geography discipline system oriented to the "physical-humanistic-informational" triadic world is proposed, the research object of information geography is discussed, and a conceptual model integrating the seven elements of information and seven dimensions of geographic descriptions is put forward; then, the development trend of geographic information science is analysed from three aspects, including geography from the perspective of information science, information geography from the perspective of geography, and geo-linguistics from the perspective of linguistics, information geography from the perspective of geography, and geolinguistics from the perspective of linguistics, the development trend of geographic information discipline is analysed. Finally, the paper summarises the possible directions and points of development of GIS, geography in the information age, geo-scenario, and geo-big model. We hope that our work can contribute to enriching the understanding of geographic information disciplines, promoting the development of geographic information related sciences, and enhancing the ability of the discipline to support national development needs and serve society.

  • LI Fadong, WANG Haiqi, KONG Haoran, LIU Feng, WANG Zhihai, WANG Qiong, XU Jianbo, SHAN Yufei, ZHOU Xiaoyu, YAN Feng
    Journal of Geo-information Science. 2023, 25(6): 1106-1120. https://doi.org/10.12082/dqxxkx.2023.220464

    Named Entity Recognition (NER) is the basis of many researches in natural language processing. NER can be defined as a classification task. The aim of NER is to locate named entities from unstructured texts and classify them into different predefined categories. Compared with English, Chinese have the features of flexible formation and no exact boundaries. Because of the features of Chinese and the lack of high-quality Chinese named entity datasets, the recognition of Chinese named entities is more difficult than English named entities. Fine-grained entities are subdivisions of coarse-grained entities. The recognition of Chinese fine-grained named entities especially Chinese fine-grained geographic entities is even more difficult than that of Chinese named entities. It is a great hardship for Chinese geographic entity recognition to take both accuracy and recall rate into account. Therefore, improving the performance of Chinese fine-grained geographic entities recognition is quite necessary for us. In this paper we proposed two Chinese fine-grained geographic entity recognition models. These two models are based on joint lexical enhancement. Firstly, we injected the vocabulary into the experimental models. The vocabulary was considered as the 'knowledge' in the models. Then we explored the appropriate fine-grained named entity recognition method based on vocabulary enhancement. And we found two models, BERT-FLAT and LEBERT, that were suitable for fine-grained named entity recognition. Secondly, to further improve the performance of these two models in fine-grained geographical named entities recognition, we improved the above two models with lexical enhancement function in three aspects: pre-training model, adversarial training, and stochastic weight averaging. with these improvements, we developed two joint lexical enhancement models: RoBERTa-wwm-FLAT and LE-RoBERTta-wwm. Finally, we conducted an ablation experiment using these two joint lexical enhancement models. We explored the impacts of different improvement strategies on geographic entity recognition. The experiments based on the CLUENER dataset and one microblog dataset show that, firstly, compared with the models without lexical enhancement function, the models with lexical enhancement function have better performance on fine-grained named entities recognition, and the F1-score was improved by about 10%; Secondly, with the improvements of pre-training model, adversarial training, and stochastic weight averaging, the F1-score of the fine-grained geographic entity recognition task was improved by 0.36%~2.35%; Thirdly, compared with adversarial training and stochastic weight averaging, the pre-trained model had the greatest impact on the recognition accuracy of geographic entities.

  • GU Jinyuan, YANG Dongfeng
    Journal of Geo-information Science. 2024, 26(2): 332-351. https://doi.org/10.12082/dqxxkx.2024.230136

    The mobile communication technology and social media has been deeply embedded into people's daily life, affecting people's choices of leisure activities. However, there is still limited understanding of the spatial regularity characteristics of its impact, particularly due to the lack of empirical analysis utilizing specific quantitative indicators. Given that the layout of leisure spaces is closely linked to social equity, it is essential to obtain a better understanding of the emerging spatial patterns in order to improve residents' well-being. To address this gap, leisure check-ins on Xiaohongshu (a Chinese social media platform) and leisure Points of Interest (POI) in Dalian are used to measure the characteristics of these two types of leisure spaces in two dimensions: concentration and clustering, and at two scales: the main urban area and subdistricts. Various spatial analysis methods, including kernel density estimation, head/tail breaks, hot spot analysis (Getis-Ord Gi*), and DBSCAN (Density-Based Clustering), are employed to analyze the data. The findings are that: (1) Leisure check-ins are mostly located in the urban central area, with a smaller distribution range and fewer hotspot cores; (2) At both the main urban area and subdistricts scales, the distribution of leisure check-ins exhibits lower concentration and clustering, with obvious "decentralized dispersion" characteristics. However, the degree of significance of these features varies across different subdistricts; (3) The majority hotspots of leisure check-ins are located in traditional hotspots, with a few emerging in expansion of urban central area or regions with unique features, such as historic urban landscape district and marina space; (4) The distribution patterns of leisure check-ins can be grouped into four types based on differences in subdistricts' concentration and clustering ratio: "original center cluster type", "original center scattered type", "new center scattered type", and "no center scattered type". The subdistricts with these different distribution patterns exhibit differences in functionality, location, and other characteristics. This study analyses the behavioral processes of leisure activities under the influence of social media through the lens of Actor-Network-Theory. Based on the fundamental principles of temporal geography and differences between "space of places" and "space of flows", it is argued that social media engenders a novel "local order" of leisure pursuits, marked by a desire for spatial exploration. This new order reflects the impact of "space of flows" based on virtual connections on "space of places" based on physical presence, which strengthens the role of node attractors, reduces the constraints of accessibility at micro scales, and increases the flexibility of location.

  • DU Qingyun, KUANG Lulu, REN Fu, LIU Jiangtao, FENG Chang, CHEN Zhuoning, ZHANG Bocong, ZHENG Kang, LI Zhicheng
    Journal of Geo-information Science. 2024, 26(1): 15-24. https://doi.org/10.12082/dqxxkx.2024.240054

    The advent of intelligent connected vehicles has seamlessly integrated into the fabric of contemporary intelligent transportation systems, emerging as an indispensable and transformative constituent. At the nucleus of this paradigm shift lies the autonomous driving high definition maps, assuming a pivotal role in propelling the evolution of intelligent transportation. The high definition maps, as a core element in intelligent connected vehicles, stand as a linchpin in advancing the development of intelligent transportation systems. Effectively establishing intricate connections among drivers, vehicles, road environments, driving conditions, significant landmarks, and the broader social environment, high definition maps act as a catalyst, propelling autonomous driving technology from Level 0 to Level 5. This article delves into the urgent imperatives steering the progression of intelligent connected vehicles and the critical role played by autonomous driving high definition maps. Beginning with an exploration of the essence, mainstream foundational data models, concepts, and characteristics of high definition maps, the discussion underscores their transformative role as a groundbreaking map data paradigm, crucial for realizing autonomous driving in intelligent connected vehicles. Subsequently, a nuanced analysis unfolds, dissecting the multifaceted characteristics woven into the entire lifecycle of high definition maps. This comprehensive examination spans diverse perceptual data types, encompassing multiple map construction methodologies, a variety of crowd-sourced updating techniques, various map application methods, the inherent intelligence embedded in map auditing processes, and innovative management modalities. Additionally, a prototypical route for high definition maps crowd-sourced updating technology is proposed, elucidating the dynamic landscape of map data refinement. Addressing the current challenges in high definition maps auditing, the study introduces an online intelligent map auditing methodology, providing a promising avenue to navigate the intricacies of the auditing process. This approach not only addresses key issues but also ensures the precision and reliability of map data. The practical application of these conceptual frameworks is exemplified through an extensive case study of the Shenzhen high definition maps pilot, offering valuable insights derived from practical experiences and explorations. In conclusion, this paper provides a forward-looking perspective on the developmental trajectory of high definition maps. It envisions their sustained significance and potential advancements, anticipating the continuous refinement and innovation in high definition maps. This ongoing evolution is expected to significantly contribute to the further enhancement of intelligent transportation systems and the maturation of autonomous driving technologies. The transformative impact of high definition maps is poised to usher in a new era of seamless and intelligent mobility, reshaping the landscape of contemporary transportation systems.

  • LIU Jingyi, PENG Ju, TANG Jianbo, HU Zhiyuan, GUO Qi, YAO Chen, CHEN Jinyong
    Journal of Geo-information Science. 2023, 25(7): 1363-1377. https://doi.org/10.12082/dqxxkx.2023.230066

    Trajectory clustering is a hot research topic in the field of spatial data mining, which is of great significance to many applications such as urban traffic control, road network construction and update. Trajectory clustering involves grouping similar trajectories into clusters where trajectory similarity measurement and clustering parameter setting are two core issues in the process of clustering. However, due to the complex morphological and structural characteristics of trajectories, the existing trajectory similarity measures are sensitive to noise or do not fully consider the consistency of trajectory motion direction. In addition, most clustering algorithms still need to manually set parameters, and the quality of clustering results is affected by the subjective experience of users. To address the above problems, this paper proposes an adaptive trajectory clustering algorithm. The proposed algorithm has two main components: a new trajectory similarity measure called Directed Segment-Path Distance (DSPD) and an improved hierarchical clustering algorithm based on the concept of central trajectory. The DSPD metric is a fusion of the spatial proximity and motion direction features of trajectories, providing a robust similarity measure. The enhanced hierarchical clustering algorithm extends the Ward hierarchical clustering algorithm by defining central trajectories and use the DSPD metric as the trajectory similarity measure. In addition, the proposed algorithm also utilizes the clustering characteristic curve to determine the optimal clustering parameters automatically. This eliminates the need for manual parameter tuning and reduces the subjectivity of clustering results. To evaluate the effectiveness of the proposed algorithm, experiments were conducted on both the simulated datasets and real-world trajectories of Wuhan. We first compared the effect of the DSPD with other commonly used trajectory similarity measures (i.e., Hausdorff distance, Fréchet distance, DTW distance, and LCSS distance) using the same clustering algorithm on the 11 sets of simulated datasets. The evaluation was based on the Adjusted Rand Index (ARI). Then we conducted another comparative analysis to access the effectiveness of the improved clustering algorithm in contrast to an average link-based hierarchical clustering algorithm. Finally, to verify the practicability of the proposed algorithm, we applied it to the process of road network updating. The experimental results show that the proposed DSPD measure outperforms alternative distance metrics on the ARI evaluation indicator. It can effectively distinguish moving trajectory clusters in different directions while considering the spatial proximity of trajectories, thus enhancing the accuracy and effect of the trajectory clustering. Furthermore, the proposed algorithm can significantly reduce the subjectivity of clustering results and provide suggestions for practical applications such as urban road network extraction and update.

  • LIU Yihan, NING Nianwen, YANG Donglin, LI Wei, WU Bin, ZHOU Yi
    Journal of Geo-information Science. 2024, 26(4): 946-966. https://doi.org/10.12082/dqxxkx.2024.230572

    In the field of intelligent transportation, various information collection devices have produced a massive amount of multi-source heterogeneous data. These data encompass various types of information, including vehicle trajectories, road conditions, and traffic incidents, soured from devices such as traffic cameras, sensors, and GPS. However, the current challenge faced by researchers and practitioners is how to correlate and integrate the massive amount of heterogeneous data to facilitate decision support. To address this challenge, knowledge graph technology, with its powerful entity-to-entity modeling ability, has shown great potential in knowledge mining, representation, management, and reasoning, making it well-suited for intelligent transportation applications. In this paper, we first review the construction techniques for geographic traffic graphs, multimodal knowledge graphs, and dynamic knowledge graphs, demonstrating the broad applicability of knowledge graphs in the field of intelligent transportation. Secondly, we summarize relevant algorithms of multi-modal knowledge graph representation learning and discuss dynamic knowledge graph representation learning in the field of intelligent transportation. Knowledge graph representation learning technology plays a crucial role in creating high-quality knowledge graphs by capturing and organizing the relationships between entities and their attributes within the transportation domain. This technology utilizes advanced machine learning algorithms to analyze and process the heterogeneous data from various sources to extract meaningful patterns and structures. We also introduce the completion technology and causal reasoning technology in dynamic transportation multi-modal knowledge graph, which is useful for improving the data of intelligent transportation systems. Comprehension ability and decision-making reasoning level have important theoretical significance and practical application prospects. Thirdly, we summarize the solutions of knowledge graph that provide important support for intelligent decision-making in several application scenarios. The utilization of knowledge graphs in intelligent transportation systems facilitates real-time data integration and enables correlation analysis of diverse data sources to provide a holistic view of the traffic ecosystem. This comprehensive understanding empowers decision-makers to implement targeted interventions and proactive measures, ultimately mitigating traffic congestion and reducing the occurrence of accidents. Through the continuous refinement and enrichment of the traffic knowledge graph, the intelligent transportation system can adapt and evolve to address emerging challenges and optimize transport networks for enhanced efficiency and safety. Finally, we analyze and discuss the existing technical bottlenecks. The future of traffic knowledge graphs and their auxiliary applications are also prospected and discussed, highlighting the potential impact of this important technology on intelligent transportation systems.

  • ZHANG Tong, LIU Renyu, WANG Peixiao, GAO Chulin, LIU Jie, WANG Wangshu
    Journal of Geo-information Science. 2023, 25(7): 1297-1311. https://doi.org/10.12082/dqxxkx.2023.220795

    Scientists still cannot fully understand and explain many complex physical phenomena and dynamic systems, which cannot be described by deterministic mathematic equations and be analyzed and predicted through compact physical mechanistic models. With the ever-increasing of observational data, data-driven machine learning methods can effectively describe many complex non-linear phenomena. Nevertheless, pure data-driven models still have shortcomings in representation, interpretation, generalization capabilities, and sample efficiency. Conventional machine learning methods are confronted with challenges brought by spatiotemporal heterogeneity and sample sparsity. Recently, Physics-Informed Machine Learning (PIML) can effectively leverage observation data to describe and analyze dynamical systems when physical principles are uncertain. PIML has gain wide attention and been extensively applied in physics, computer science, biology, medical science, and geosciences. In recent years, artificial intelligence and machine learning technologies have been widely applied in geography, especially in GIScience and remote sensing, attracting wide research interests of geographers. This line of research is termed GeoAI and has become a cutting-edge research frontier in geography. PIML methods integrate the ideas of model-driven and data-driven methods, introducing new research paradigms for GeoAI and improving the description and prediction of complex geographical phenomena. This survey first summarizes recent progress in this domain from the perspectives of the representation of physical priors and the integration of physical priors in machine learning methods. Physical prior refers to existing independent knowledge that is already available before building machine learning models. This survey reviews the representation of physical priors from the aspects of augmented data and customized features, physical laws and constraints, governing equations as well as geometric properties. We also review how physical priors are integrated into various machine learning models, including constraint modeling, auxiliary task design as well as model training and inference. Based on the PIML survey framework, we explore the relationships between spatiotemporal priors and other physical priors, before briefly reviewing and summarizing typical case studies of spatiotemporal prior-informed GeoAI research. We also discuss the research agenda and future prospects of spatiotemporal prior representation and the spatiotemporal prior-informed GeoAI in the context of geo-machine learning and GeoAI frontiers. In light of fast progress of PIML, we contend that GeoAI studies that are well informed by spatiotemporal priors can gradually establish a generic geographical representation, analysis, prediction, and interpretation framework, which not only helps handle many classical problems in GIScience but also addresses future profound challenges of human being by encouraging geographers to explore more research opportunities when collaborating with researchers from other disciplines.

  • HUANG Hao, WANG Junchao, WANG Chengfang, XIE Yuanyi, ZHANG Wenchu
    Journal of Geo-information Science. 2023, 25(12): 2303-2314. https://doi.org/10.12082/dqxxkx.2023.230208

    The assurance of a consistent supply of daily necessities in megacities is pivotal in fortifying community supply resilience. It is axiomatic that a community system is not an insular entity; rather, it intricately intertwines with various elements of urban systems. As a foundational unit of urban governance, the urban community is instrumental in facilitating a congruent nexus between supply and demand, thereby augmenting urban resilience. This study proposes an exploratory evaluation method for the urban community supply support and resilience based on complex network theory, attempting to achieve a breakthrough in the underlying theoretical framework of resilience assessment from "single system assessment" to "multi-system correlation assessment". Taking the six districts in the central city of Guangzhou as an example, we build a supply-demand network based on citizens' spatio-temporal behaviors using multi-source data such as mobile phone signaling data and other data. The attacking strategies of network are based on five community resilience indicators. Besides, the cascade failure mechanism is introduced to evaluate the network resilience, and the entropy-weighted method is employed to obtain resilience evaluation results. The influence mechanism of community resilience on the supply system is further analyzed by studying the factors affecting community node failure at different stages of supply network. The findings are as follows: (1) The proposed evaluation model of the community supply support and resilience can effectively simulate urban community supply-demand networks and evaluate the resilience of communities. Low-resilience communities are mainly categorized into three spatial types: old blocks, urban villages, and suburban blocks; (2) Through the analysis of network resilience under five different attack strategies, it is found that the dominant influencing factors are different, with the population density being the primary factor; (3) There exists a complex bidirectional relationship between community resilience and supply security, including the obvious vulnerability of low-resilience communities. And the community self-organization ability, the supply facility layout, and the linkage scheduling between supply points all affect the overall community resilience.

  • JIANG Bingchuan, SI Dongyu, LIU Jingxu, REN Yan, YOU Xiong, CAO Zhe, LI Jiawei
    Journal of Geo-information Science. 2024, 26(4): 848-865. https://doi.org/10.12082/dqxxkx.2024.240151

    Cyberspace surveying and mapping has become a hot research topic of widespread concern across various fields. Its core task involves surveying the components of cyberspace, analyzing the laws of cyberspace phenomena, and mapping the structure of cyberspace. Research on cyberspace surveying and mapping faces issues such as diverse conceptual terminologies which is lack of unified research frameworks, unclear understanding of elements and laws, non-standardized methods of cyberspace map expression, and the absence of unified standards. Based on systematically reviewing the current status of cyberspace surveying and mapping research across fields, a common understanding of the essence of cyberspace has been analyzed. Starting from the spatial, geographical, and cultural characteristics of cyberspace, the features and advantages of studying and utilizing cyberspace from the perspective of mapping geography are dissected. A research framework for cyberspace surveying and mapping is proposed, focusing on the core content and key technologies of "surveying " and "mapping" in cyberspace, and explaining its relationship with 3D Real Scene, Digital Twins and Metaverse. Cyberspace surveying has been divided into narrow and broad senses, pointing out the lack of holistic measurement of cyberspace features and the lack of research on measuring the phenomena and patterns of human activity in cyberspace. From the perspective of cyberspace cognitive needs, a conceptual model and classification system for cyberspace maps have been proposed. Focusing on the cyberspace coordinate system, "geo-cyber" correlation mapping, and methods of expressing cyberspace maps, the key technologies for creating cyberspace maps are described in detail, and the methods of representing cyberspace maps and their applicability are systematically analyzed. Finally, key scientific questions and critical technologies that need focused research, such as the top-level concepts of cyberspace, cyberspace modeling methods, theories and methods of cyberspace maps, and the design of application scenarios for cyberspace maps, are discussed.

  • DU Xiaowan, CHEN Xi, ZHENG Hongwei, LIU Ying, LIU Tie, BAO Anming, HU Ping
    Journal of Geo-information Science. 2023, 25(8): 1586-1600. https://doi.org/10.12082/dqxxkx.2023.230033

    Most of the precipitation datasets in Central Asia have problems such as data missing, geographical bias and outliers, low resolution, and so on. The normal prediction results obtained by most machine learning methods are usually hard to interpret, not only due to the uncertainties from input information but also due to the complicated global geographical environments as well as the underlying local geographical conditions. In this paper, to overcome this problem, we proposed a novel downscaling precipitation model to adjust and optimize the precipitation computation results from Conditional Generative Adversarial Networks (CGAN) using an inverse distance weighting method based on the prior information of geographical differences of local digital terrain model and multiple weather stations. In this study, the Amu Darya River Basin was selected as the research area due to its various geographical environment and complicated topographic and geographical conditions. First, the input Climate Research Units (CRU) precipitation data with 55 km resolution were spatially corrected based on the topographic map using the spatial deformation model. The spatial deformation model was extended from spatial transformation network methods. Second, we input the corrected CRU precipitation data, temperature, wind speed, humidity equivalent data, and remote sensing data to the CGAN computing framework for high-resolution precipitation reconstruction. The experiment adopted the cross-validation method, taking 80% of the data as the training set, and the remaining 20% as the verification set. The test set contained 20 raster maps of annual precipitation from 2000 to 2019. The model was built based on pytorch 1.10.0, the batch size was 16, and the learning rate was 0.000 3. The epoch was 8 000 iterations in the Adam optimizer for gradient descent. Finally, the precipitation data of meteorological stations were used as the true values for analyzing the geographical differences of inverse distance weights and the accuracy of the corrected precipitation grid data. The results show that the proposed method can improve the resolution and accuracy of precipitation data,especially for the complex terrain and mountainous area. And Experiments on the Amu Darya in Central Asia show that the Root Mean Square Error (RMSE) of the downscaling result within the watershed was 15.96 mm, the Mean Absolute Error (MAE) was 11.82 mm, the R2 value was 0.83, and the deviation was 0.08. This study provides a robust, accurate method for improving the spatial resolution of precipitation data in complex geographical areas.

  • YAN Zhaojin, YANG Hui, CI Hui, WANG Ran
    Journal of Geo-information Science. 2023, 25(11): 2134-2149. https://doi.org/10.12082/dqxxkx.2023.230059

    Extraction of ship routes and analysis of traffic flow are the basis of route design, maritime management, and trade analysis. Based on the massive ship trajectory data, existing ship route extraction methods still have limitations in terms of adaptability to large sea areas, model complexity, and consistency with real maritime traffic routes. In this study, we propose a ship trajectory extraction model and traffic flow analysis based on massive ship Automatic Identification System (AIS) data. Firstly, the ship's navigation trajectory is abstracted as the combination of a ship's stay points (stop points) and movement points (waypoints). Stop points represent the characteristic of a ship's stop trajectory at the port, and the waypoint represents the ship's moving trajectory characteristic, e.g., the sailing speed or sailing angle changes significantly. The navigation trajectory abstraction model denoted as "departure port (stop point)→movement (waypoint)→destination port (stop point)" of a ship is constructed, enabling the division of ship navigation trajectory. Secondly, based on the abstract model of ship navigation trajectory, further clustering of stop points and waypoints of the massive ship navigation trajectory based on graph theory is implemented to extract route points (stop points and waypoints) of ships. Finally, a route point connection matrix is established to realize ship route extraction in the form of ship traffic map, which provides a new method for ship route extraction and traffic flow analysis. Taking the Silk Road area in the South China Sea as the study area, the historical AIS data for the entire year of 2017 are used to analyze the traffic flow characteristics and ship routes of typical merchant ships (i.e., container ships, bulk carriers, and oil tankers). The results show that the extracted ship routes are highly consistent with the maritime traffic in high-density areas and can reflect the real maritime traffic routes. Compared with the existing shipping route data, the details of extracted routes are enriched, and the structure is more comprehensive. In addition, compared with the existing shipping route extraction methods, the proposed method has two following advantages. First, the shipping routes extracted by the proposed method have greater richness. The proposed method not only extracts the shipping routes but also identifies the characteristic points during ship navigation, i.e., the stopping points and the waypoints of the ship route, which provides important knowledge support for route design and navigation safety. Second, the extracted routes can be easily applied to analyze the maritime traffic network. Since the extracted routes are in the form of point-to-point starting from the port, it is easy to construct a maritime traffic network, allowing for potential transportation network analysis. This study contributes decision-making support for ship route planning, traffic flow analysis, navigation safety, etc.

  • HUANG Jingxiong, LIANG Jiaqi, YANG Mengsheng, LI Yuan
    Journal of Geo-information Science. 2024, 26(2): 352-366. https://doi.org/10.12082/dqxxkx.2024.220404

    Street space is the main space that affects tourists' experience of tourism sites. The visual quality of street space is crucial to the development of tourism. However, the evaluation method of visual quality needs further exploration. This paper selected Gulangyu, the famous tourism site in Xiamen, as a study case. First, we established a quantitative model of visual quality combining the existing research on street space and the visual elements of tourism sites. Then, we collected street view data of each intersection by traveling like tourists, corrected imaging parameters, and encoded the street view images. Second, based on the deep learning method (Fully Convolutional Networks, FCN), we segmented the collected street view images semantically and extracted the visual elements in street view data. Finally, by combining with GIS, we set up a geographic information database to analyze the visual and spatial characteristics of each sampling point's visual elements. This database was aimed at providing a basis for further evaluation of the visual quality of street space. It was aggregated using the street line as the smallest unit. In our study, we calculated the visual quality indicators to evaluate the street space in Gulangyu. The results show that: (1) There is obvious spatial differentiation in the visual elements of street space in Gulangyu; (2) Building density, street width, and vegetation sketches are the basic visual elements that shape the visual quality of street space; (3) The distribution of botanical parks, major docks, and commercial facilities significantly impacts the street space's visual quality. In detail, green plants, buildings, roads, sky, and street facilities show the differences between a center and a roundabout. While the distribution of pedestrians shows differences between the east and the west. The green view rate, enclosure, sky openness, and diversity of street space also have obvious center-roundabout spatial differentiation. Moreover, there is an obvious spatial agglomeration effect in the green view rate, crowding degree, and diversity of street space. The agglomeration points are mainly parks, docks, and commercial streets. The method in this paper provides a new collection method in street visual quality evaluation. The visual element extraction accuracy based on FCN is fairly high, which can provide a reference for street view images and other types of image data analysis. This paper provides a valuable reference for street space management and planning, resource integration and allocation, human flow guidance, and regulation in tourism sites.

  • LI Yuan, LIANG Jiaqi, ZHAO Long, DU Ya'nan, YANG Mengsheng, ZHANG Na
    Journal of Geo-information Science. 2024, 26(2): 274-302. https://doi.org/10.12082/dqxxkx.2024.220723

    In the context of culture-tourism integration, digital China, and activated utilization of heritage, heritage tourism has become a hot topic in academia and industry. The mismatch between spatial representation of heritage value and tourists' spatial perception is one of the most prominent contradictions in current heritage tourism. From the perspective of heritage value, this paper combines bibliometric analysis and systematic review to discuss relevant research from four aspects: interpretation and quantification of heritage value, spatial calculation and representation of heritage value, tourists' perception of heritage value and space, and tourists' spatial behavior in heritage site. Besides, comparisons between Chinese and foreign literature of these four themes are conducted to figure out the similarity and difference. The main findings are as follows: (1) there are abundant achievements in the interpretation of heritage value, which mainly focus on the connotation and interpretation technology of heritage value, but lack of quantitative methods; (2) the spatial calculation and representation of heritage value is object-oriented and application-oriented, and the geographic information system and spatial information technology are commonly used methods; (3) studies on tourists’ perception of heritage value and space are mostly from the perspective of tourism destinations of heritage sites but ignore the heritage value and spatial attributes, lacking the exploration of relationship between heritage value, heritage space, and tourists. The measurement dimension of sensory perception is mainly visual; (4) the research on tourist behavior in heritage site mainly focuses on the characteristics, patterns, causes, and influencing factors of behavior. It emphasizes the importance of practical application and reflects the orientation of heritage responsibility; (5) the spatial calculation and representation of heritage value, as well as tourists' perception of heritage value and space, are still lack of concern in the context of natural heritage and mixed heritage; (6) there are similarities and differences in the research objects, methods, and contents of Chinese and foreign literatures; (7) in the future, the interpretation and representation of heritage value will transition from traditional narrative to spatial quantification, and the perception and calculation of heritage space will shift from spatial footprint to perceptual behavior. Based on above findings, this paper puts forward a theoretical framework and methodological path from multidisciplinary perspective for tourists' spatial perception and calculation of heritage value, in order to promote the interdisciplinary theory and technology integration of heritage research. In conclusion, this paper provides theoretical references for related research and practical references for heritage protection, heritage site management, tourism development, and heritage value inheritance.

  • YANG Mingwang, ZHAO Like, YE Linfeng, JIANG Huawei, YANG Zhen
    Journal of Geo-information Science. 2024, 26(6): 1500-1516. https://doi.org/10.12082/dqxxkx.2024.240057

    Building extraction is one of the important research directions that has attracted great attention in the field of remote sensing image processing. It refers to the process of accurately extracting building information such as the location and shape of buildings by analyzing and processing remote sensing images. This technology plays an irreplaceable and important role in urban planning, disaster management, map production, smart city construction, and other fields. In recent years, with the advancement of science and technology, especially the continuous evolution of earth observation technology and the rapid development of deep learning algorithms, Convolutional Neural Networks (CNNs) have become an emerging solution for extracting buildings from remote sensing images because of their powerful feature extraction capability. The aim of this paper is to provide a comprehensive and systematic overview and analysis of building extraction methods based on convolutional neural networks. We conduct a comprehensive literature review to summarize the building extraction methods from perspectives of model structure, multi-scale feature differences, lack of boundary information, and model complexity. This will help researchers to better understand the advantages and disadvantages of different methods and the applicable scenarios. In addition, several typical building datasets in this field are described in detail, as well as the potential issues associated with these datasets. Subsequently, by collecting experimental results of relevant algorithms on these typical datasets, a detailed discussion on the accuracy and parameter quantities of various methods is conducted, aiming to provide a comprehensive assessment of performance and applicability of these methods. Finally, based on the current research status of this field and looking forward to the new era of high-quality development in artificial intelligence, the future directions for building extraction are prospected. Specifically, this paper discusses the combination of Transformers and CNNs, the combination of deep learning and reinforcement learning, multi-modal data fusion, unsupervised or semi-supervised learning methods, real-time extraction based on large-scale remote sensing model, building instance segmentation, and building contour vector extraction. In conclusion, our review can provide some valuable references and inspirations for future related research, so as to promote the practical application and innovation of building extraction from remote sensing images. This will fulfill the demand for efficient and precise map information in remote sensing technology and other related fields, contributing to the sustainable and high-quality development of human society.

  • JIANG Yiyi, GAO Jie, GUO Jiaming, XU Haibin
    Journal of Geo-information Science. 2024, 26(2): 242-258. https://doi.org/10.12082/dqxxkx.2024.230017

    The way we capture and analyze human activity and behavior is changing because of big data. A variety of new data sources have emerged to supplement the official data, offering a significant amount of data with potential application value for the research of tourism and leisure while overcoming the common problem of insufficient data in traditional tourism research. Based on the research frontier of big geodata, this paper explains the theoretical foundation of tourism under the background of geographic multi-source big data at three levels: human tourism activities, tourism geographical environments and destinations, and the relationship between tourists and tourist destinations. Secondly, this paper summarizes the application of big geodata, such as human tourism activity data (e.g., UGC data, device data, transaction data) and tourism geographical environment data (e.g., POI, environmental data). Finally, this paper discusses the challenges and prospects of big geodata in three aspects: research paradigm and theory, multi-source data fusion, and analysis methods. For the research paradigm and theory, there is the requirement for standardize and systematize the scientific research paradigm by combining different events and scenarios to create an interpretation system of Chinese tourism geography based on "process-structure-mechanism". In terms of multi-source data fusion, the combination of big data and other data is necessary. In terms of analysis methods, efforts are still needed to improve the adaptability of analysis methods and incorporate the specific variables of tourism phenomena.

  • JIANG Dong, GAO Chundong, GUO Qiquan, CHEN Shuai, HAO Mengmeng
    Journal of Geo-information Science. 2023, 25(10): 1923-1932. https://doi.org/10.12082/dqxxkx.2023.220169

    With the development of science and technology, cyberspace has been deeply integrated with people's daily lives and represents a new spatial form of human activities. The cyberspace correlates to the real world, but on the other hand it also differs from it. Cyberspace has distinct geographical characteristics, and the spatial-temporal relationship in geograph remains an indispensable element in cyberspace. Therefore, it is of great significance to apply geographical thinking to the cognition of cyberspace in order to describe the situation of cyberspace and maintain cybersecurity. In this paper, we review the emergence and development of cyberspace, analyze the basic structure and characteristics of cyberspace, and examine the geographical properties of cyberspace based on different views of cyberspace. From the perspective of the three laws of geography, this paper discusses how to use geographical thinking and Geographic Information Science (GIS) methods to describe cyberspace, and takes the visualization of cyberspace, the construction of geographic knowledge graph of cyberspace, and the intelligent analysis of cyberspace behavior as examples to illustrate how to apply geographical thinking to the analysis and research of cyberspace. Exploring the geographical properties of cyberspace and applying geographical techniques to cyberspace protection can provide new insights into the comprehensive governance of cybersecurity, thus improving the cognitive level and governance capabilities of cyberspace in the new era.

  • LIN Liangguo, ZHAO Yaolong, KE Entong
    Journal of Geo-information Science. 2024, 26(4): 898-914. https://doi.org/10.12082/dqxxkx.2024.240198

    In China, urbanization has entered a later stage characterized by a slowdown in growth rates and a focus on quality enhancement. The urban growth paradigm is transitioning gradually from "incremental development" to "quality improvement of existing urban stock", marking the adoption of a new urbanization mode centered around urban renewal. Urban renewal, as a spatial governance activity within the scope of national territory, aims to continuously enhance city functions, optimize spatial layout, improve environmental quality, and stimulate economic and social vitality. However, challenges of urban renewal, such as the ambiguous definition of urban renewal oriented towards national spatial planning and the lack of a systematic logical framework for geographic information technology tailored for urban renewal, still persist. Therefore, this study reexamines the connotations of urban renewal research from the perspective of the "Production-Living-Ecological" space, expecting to achieve "intensive and efficient production space", "livable and moderate living space", and "beautiful and ecofriendly ecological space". Furthermore, with reference to the three processes of perception, assessment and optimization in "Urban Cognition", the logical architecture of geospatial information technology application for urban renewal is constructed, and based on this framework, the contributions of geographic spatial information technology in data collection, model assessment, and simulation optimization are elucidated. In the production space, geospatial information technology is able to perceive the production elements of urban renewal in real time, rapidly construct the economic benefit assessment index system and spatial assessment model, simulate the geographical process of industrial development, and optimize the spatial pattern of production. In the living space, the application of geospatial information technology helps to integrate the resources of living elements by means of spatial and temporal digitization, comprehensively assess the social benefits and carry out the spatial optimization of the allocation of public service facilities. In the ecological space, geospatial information technology provides an efficient and fast technical method for perceiving the elements of the natural environment and natural resources in a timely manner, constructing an ecological efficiency assessment index system to identify "urban diseases", optimizing the ecological spatial pattern, and exploring coping strategies to solve "urban diseases". Finally, based on the actual needs of urban renewal, the prospects for application of geographic spatial information technology in urban renewal research are discussed. This paper proposes comprehensive perception, comprehensive assessment, comprehensive optimization of urban renewal and construct an urban renewal technology system covering the whole process of "Perception-Assessment-Optimization", so as to improve the city's ability to adapt to the future development of regulation. These efforts will facilitate the modernization of national spatial governance systems and capabilities.

  • LUO Qiuyu, YUE Yang, GU Yanyan
    Journal of Geo-information Science. 2023, 25(6): 1164-1175. https://doi.org/10.12082/dqxxkx.2023.230054

    Knowledge graphs are an important data infrastructure in AI technologies and applications, and have become a hot research topic in geosciences. The size and topological features in geographic knowledge graphs are usually different from universal knowledge graphs, which are not typical small-world networks. However, existing studies often use the default network search depth when learning geographic knowledge graph representations, and its rationality needs further demonstration. For this purpose, this paper constructs a metro travel knowledge graph based on the topological structure features of metro line network, combined with passenger flow data, POI (Point of Interest) data and built environment data, etc.; then GraphSAGE model is used to learn node multidimensional feature embedding and combine POI data for semantic recognition of station classification results to verify the suitable network search depth for metro travel knowledge graph. The results showed that, compared to the default 2 layers search depth, the node embedding features of this metro travel knowledge graph work optimally when the search depth is 3 layers. This study shows that the hyperparameter selection of the geographic knowledge graph representation is supposed to take into account the geographic features, and it is important to avoid the use of results from fields such as computer science that have not been distinguished. When the search depth is 3 layers, the metro station classification results are also more reasonable and explanatory, which can provide a basis for station planning and passenger flow prediction using knowledge graph and AI methods.

  • YAN Minzu, DONG Guanpeng, LU Binbin
    Journal of Geo-information Science. 2024, 26(6): 1351-1362. https://doi.org/10.12082/dqxxkx.2024.230709

    With the expansion of urban areas, a mix of transportation modes has become prevalent during the daily commutes of city dwellers. That is, commuters often need to transfer between various modes to reach their destinations. Accurate identification and analysis of these transfer behaviors are crucial for advancing urban transportation research. Current research tends to focus on distance or time thresholds, typically derived from walking speeds or anecdotal experience. However, these approaches often overlook the distinct station densities within cities. Other studies, while utilizing GPS, GTFS, and similar datasets, construct intricate transfer identification methods that lack generalizability. Against this backdrop, we introduce a time-distance dual-constraint transfer recognition algorithm. Firstly, leveraging extensive traffic IC card data, based on the statistical characteristics of the proximity distance sequences between bus or subway stations and their M neighboring stations, distance thresholds for bus-bus, bus-subway, and subway-bus transfer are detected individually. Subsequently, a filtering algorithm based on these distance thresholds is applied to daily data to produce a candidate transfer data set. Based on this, four time thresholds for each day are determined by analyzing the statistical characteristics of the transit time differences within the datasets. Finally, these dual thresholds facilitate the precise extraction of transfer behaviors. Furthermore, we establish a classification framework for these behaviors, classifying them into nine distinct transfer modes. These modes are defined based on the duration of travel time in the first and second journeys, encompassing variations including long-long, long-medium, long-short, middle-long, middle-middle, middle-short, short-long, short-middle, and short-short. We analyze these models individually for their travel characteristics. Results reveal that the morning peak for all transfer trips precedes that of buses and subways, with short-long transfers leading by up to 30 minutes. This underscores the added effort required by commuters who rely on transfers. In contrast, evening peak times vary, with certain transfer modes like long-long and long-short lagging notably behind the general evening peak. This further emphasizes the increased commuting burden associated with transfers. In terms of travel distances, the peak of regular subway travel distances is around 10 km, while that of the bus travel distances is around 1 km. The peak commuting distances for all nine transfer behaviors are greater than those of typical trips and are distributed within a range of 20~40 km. In summary, our method for extracting and analyzing transfer behaviors offers a robust and effective tool for urban transportation research, urban vitality assessment, public transportation planning, and urban planning.

  • LI Xinran, HE Rixing, JIANG Chao, JIN Xin, TANG Zongdi, LONG Wei, DENG Yue
    Journal of Geo-information Science. 2024, 26(6): 1390-1406. https://doi.org/10.12082/dqxxkx.2024.230643

    The movement of people within urban areas serves as a driving force for the development of social phenomena. Accurate Origin-Destination (OD) flow data record spatial interaction patterns of individuals, goods, or information from their starting points (Origin [O]) to their destinations (Destination [D]). Precise prediction of internal city OD flows is crucial for optimizing urban traffic operational efficiency, enhancing resource utilization, and fostering sustainable urban development. However, obtaining high-quality OD flow data is challenging due to issues such as privacy protection. There are significant hurdles, including high acquisition costs, limited coverage within large areas, and sparse spatial distribution, which hinder extensive research in urban computation. Current research often relies on a single scale, utilizing extensive historical traffic data between geographic locations to predict future flows. Yet, there has been limited exploration into crucial features and model accuracy for different spatial scales. This study addresses this gap by employing taxi trajectories in Beijing and leveraging the Deep Gravity model to predict OD flow at different spatial scales. Additionally, the integration of SHapley Additive exPlanations (SHAP) values sheds light on the pivotal features influencing OD flow predictions across diverse scales. Results show that: 1) Compared to Gravity model and Radiation model, the Deep Gravity model at the street scale exhibits the highest accuracy in predicting OD flows, achieving an impressive Common Part of Commuters (CPC) value of 0.83. The Deep Gravity model effectively captures the overall structure of the OD flow network during peak morning and evening hours in Beijing, revealing a distinctive "circular dispersal" pattern; 2) For the selected spatial scales, the four features with the most significant impact on OD flow prediction accuracy are the travel distance between O and D points, the number of businesses around O and D points, the quantity of dining establishments, and the number of shopping services; 3) The local impact of the same feature on OD flow prediction models differs from its global impact. For instance, features related to education, science, and culture, as well as sports and leisure Points of Interest (POI), exhibit relatively minor effects on the model at a global scale. However, on a local scale, these features demonstrate a significant influence. This study has achieved high-precision prediction of OD flows at various spatial scales. Additionally, it quantitatively reveals the crucial factors influencing OD flow modeling at different spatial scales, thereby providing valuable insights into understanding population movements within urban areas. The findings of this research hold significant practical implications for urban planning, traffic management, and the development of smart cities.

  • LI Xiaoen, LIU Yi, JIANG Liming, HUANG Ronggang, ZHOU Zhiwei, PANG Xiaoguang
    Journal of Geo-information Science. 2024, 26(4): 1019-1039. https://doi.org/10.12082/dqxxkx.2024.230458

    Glacial lakes, as the primary carriers of glacier meltwater, can postpone the loss of local glacier freshwater resources to some degree. However, they also offer a breeding ground for Glacial Lake Outburst Floods (GLOFs) and other mountain natural disasters (e.g., landslides, mudslides, etc.). In the mountain glacier zones, glacial lakes play a crucial role in the chain of glacier-related disaster risk. The sudden release of a massive volume of water occurs when a glacial lake dam breaches, is overtopped, or is influenced by other events such as earthquakes and avalanches of ice or rock, which poses a major danger to the downstream infrastructure, possessions, and lives of residents living in high-altitude mountains. Glacial lake evolution and glacial changes are closely related to each other. As glaciers shrink and recede, glacial lakes develop and expand. Effective prevention and management of glacial lake disaster risk requires knowledge of glacial lake changes, in addition to retrospective and investigative studies on past glacial lake outburst flood events. However, due to the distribution of glacial lakes in high-altitude mountain regions, its susceptibility to global warming, and the difficulty in accessing these areas, remote sensing monitoring has emerged as the most practical technical method and provides opportunities for analyzing global climate change and assessing natural disasters. Recent research has indicated an increase in the frequency and impact of GLOFs incidents, emphasizing the growing significance of studying these disasters. Based on this, in this study, we first identified key research areas in recent years through the metrological analysis of the literature on the remote sensing monitoring of glacial lakes and GLOFs. Second, focusing on three main directions of the research on glacial lakes and GLOFs (109 important research literatures), namely remote sensing monitoring of glacial lakes and GLOFs, response analysis of glacial lake evolution in the context of climate change, and glacial lake risk assessment with case studies of GLOFs, ten essential topics of recent research advances at home and abroad as well as the shortcomings of current studies are systematically summarized and analyzed. Finally, the direction of future research is prospected, including extraction of glacial lake morphology using artificial intelligence and GLOFs events inventory, glacier-glacial lake (especially for proglacial, supraglacial lake) system evolution and its relationship to climate change, glacial lake monitoring, and early warning and disaster prevention. Our review offers references for the management and adaptive planning of glacial lake and mountain glacier related catastrophes.

  • LU Huijia, HU Zui
    Journal of Geo-information Science. 2024, 26(6): 1407-1425. https://doi.org/10.12082/dqxxkx.2024.240008

    Traditional settlements have gathered a wealth of traditional cultural resources such as ancient architecture and folklore, which have attracted significant attention for their outstanding historical, cultural and artistic values, and it is of positive significance to extract their abundant historical and cultural information and serve them for modern industrial development. Currently, there is a lack of knowledge extraction, organization and expression of the rich historical and cultural information of traditional settlements based on geographic knowledge extraction and expression perspectives to achieve the transformation of "data-information-knowledge-wisdom", this paper proposes the geographic ontology of cultural landscape genes of traditional settlements (GeoOnto-CLGTS) and explores the intrinsic correlation characteristics of the traditional landscape genes of traditional settlements. Firstly, combining the geographic information ontology and characteristics of traditional settlement landscape genes, the concept and expression method of GeoOnto-CLGTS are analyzed, and this paper proposes the construction method of GeoOnto-CLGTS model. Secondly, combing the landscape gene concepts, association relationships and data attribute characteristics, the seven-step geographic information ontology modeling method is applied to construct the conceptual layer of GeoOnto-CLGTS from top-down. By utilizing Protege tool to supplement examples using 123 traditional Chinese settlements as cases, the instance layer construction of the GeoOnto-CLGTS model is achieved. Finally, the GeoOnto-CLGTS data is stored through the Neo4j graph database to complete the construction of the knowledge graph of traditional settlement landscape genes, enabling the retrieval of landscape gene information. The results show that the GeoOnto-CLGTS constructed in this paper can provide a valuable reference for carrying out knowledge discovery of traditional settlement cultural resources and promoting digital preservation of traditional settlements in the future.