×
模态框(Modal)标题
在这里添加一些文本
Close
Close
Submit
Cancel
Confirm
×
模态框(Modal)标题
×
Journal
Article
Figure
Search
EN
中文
Home
About Journal
Overview
Indexing
Awards
Editorial Board
Guide for Authors
Editorial Policies
Subscription
Contact Us
EN
中文
Figure/Table detail
MSF-UNet: A Mamba-based Spatial-Frequency Feature Fusion U-Net for Unsupervised Change Detection in SAR Images
ZHANG Yu, ZHUANG Huifu, ZHANG Xiang, TAN Zhixiang, LIU Yuhao, SHANG Jingjie, GUO Mingming
Journal of Geo-information Science
, 2025, 27(
9
): 2213-2229. DOI:
10.12082/dqxxkx.2025.250269
方法
DSCF
Mamba
频率域特征编码器
总体误差/个
F
1_
Score
/%
Kappa
/%
参数量/M
M1
×
×
×
15 248
0.842
0.778
89.645
M2
√
×
×
10 183
0.893
0.851
89.645
M3
√
√
×
9 283
0.904
0.864
91.847
M4
√
√
√
6 738
0.928
0.898
108.847
Tab. 3
Evaluation metric results of ablation experiments on the Handan dataset
Other figure/table from this article
Fig. 1
The overall framework of the proposed method
Fig. 2
Flowchart of the DSCF method
Fig. 3
Structural diagram of the MSF-UNet model
Fig. 4
Images and reference change map of the Handan dataset
Fig. 5
Images and reference change map of the Yellow River dataset
Fig. 6
Impact analysis of threshold m on
F
1
_Score
of change detection results
Fig. 7
Change detection results of different methods on the Handan dataset
Tab. 1
Quantitative analysis results of different methods on the Handan dataset
Fig. 8
Change detection results of different methods on the Yellow River dataset
Tab. 2
Quantitative analysis results of different methods on the Yellow River dataset
Fig. 9
Change detection results of the ablation experiment on the Handan dataset
Tab. 4
Model parameter quantities and floating-point operation counts of different methods