高分遥感图像相对辐射校正中的伪不变地物自动提取和优化选择
施海霞(1979— ),女,江苏南京人,高级工程师,主要研究方向为土地利用及地理信息应用研究。E-mail:178537186@qq.com |
收稿日期: 2020-05-26
要求修回日期: 2020-08-10
网络出版日期: 2021-07-25
基金资助
江苏省研究生科研创新计划项目(KYCX20_1179)
国家自然科学基金项目(41471283)
版权
Automatic Extraction and Optimal Selection of the Pseudo Invariant Features for the Relative Radiometric Normalization in High-Resolution Remote Sensing Imagery
Received date: 2020-05-26
Request revised date: 2020-08-10
Online published: 2021-07-25
Supported by
The Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX20_1179)
National Natural Science Foundation of China(41471283)
Copyright
相对辐射校正是遥感变化检测中重要的预处理过程,伪不变地物(Pseudo-Invariant Features,PIF)是多时相影像中相对不变的地物,是相对辐射校正中的重要依据。针对高分遥感图像变化检测中相对辐射校正的要求,本文提出了一个自动提取和优化选择PIF的流程和方法:首先计算两期图像的亮度、光谱特征和空间特征的变化向量,然后对各变化向量的像元值从低到高进行排序,经多数投票后提取PIF,最后使用“迭代线性回归—去除异常值”方法选择获得最终PIF。以2016年11月27日和2017年7月18日的2期“北京二号”高空间分辨率多光谱影像为例,选择地物占比不同的两个实验区对流程和方法进行了验证,并与多元变化检测和迭代加权多元变化检测的PIF提取方法进行了比较。使用两期WorldView-2影像和Landsat-8 OLI影像对方法的适用性进行了验证。结果表明:① 2个实验区提取的PIF精度分别为98.74%和98.71%,PIF像元合理分布于未变化区域、包括了影像中主要的地物类型;② 使用本文方法提取的PIF建立的相对辐射校正模型具有显著的线性拟合效果(p<0.000 1);③ 本文方法考虑了图像亮度、光谱信息以及空间信息的差异,使用参数少,可操作性高;④ 与多元变化检测和迭代加权多元变化检测方法相比,本文方法提取的PIF更为合理,建立的辐射校正方程拟合效果更佳;⑤ 本文方法适用于具有相同波段设置的中、高空间分辨率光学遥感影像。
施海霞 , 韦玉春 , 徐晗泽宇 , 周爽 , 程琪 . 高分遥感图像相对辐射校正中的伪不变地物自动提取和优化选择[J]. 地球信息科学学报, 2021 , 23(5) : 903 -917 . DOI: 10.12082/dqxxkx.2021.200266
Relative radiometric normalization is an important process in the remote sensing image change detection. Identifying the Pseudo-Invariant Features (PIF) with invariant or near-invariant radiometric reflectance over a certain period in multi-temporal images is a key to radiometric normalization. This paper proposed a novel method for automatic extraction and optimal selection of PIF. First, the change vectors including brightness, and spectral and spatial domains of bitemporal images were generated. Then, the pixels of each change vector were sorted from the lowest to the highest value, and the majority vote algorithm was used to extract the initial PIF. Finally, the PIF was selected by the iterative linear regression and outlier analysis. Taking two multi-spectral high-resolution Tripesat-2 images acquired on November 27, 2016 and July 18, 2017 as example, two typical regions with different land cover types were selected to test the proposed method. The proposed method was compared with Multivariate Alteration Detection (MAD) and Iteratively Reweighted Multivariate Alteration Detection (IR-MAD) methods. The applicability of the proposed method was also validated by two WorldView-2 and Landsat OLI images. The results show that: (1) the accuracy of the PIF that extracted within two regions were 98.74% and 98.71%, respectively. The extracted PIF was distributed in the unchanged areas and covered the main land cover types in the images; (2) the linear regression models of the relative radiometric normalization using the PIF extracted by the proposed method were significant (p<0.000 1); (3) the differences in image brightness, spectral domain, and spatial domain were taken into account in this method with less parameters and high operability; (4) compared with MAD and IR-MAD, the proposed method showed a better performance in extraction precision and an significant linear regression model of the relative radiometric normalization; and (5) the proposed method was suitable for other medium- or high-resolution remote sensing images with same bands.
表1 “北京二号”影像的主要参数Tab. 1 Main parameters of the TripleSat-2 |
类型 | 参数 |
---|---|
卫星轨道信息 | 太阳同步轨道(SSO) 轨道高度:651 km 升交点地方时(LTAN):10 : 30 |
侧摆能力 | 整星侧摆 45° |
影像分辨率/m | 全色:0.8;多光谱:3.2 |
幅宽/km | 24 |
信噪比 | > 100:1 |
MTF | 全色:> 0.1;多光谱:> 0.2 |
量化值/bit | 10 |
成像模式 | 多景模式 沿轨立体 跨轨立体 条带模式(约4000 km) 区域成像(约40 km×40 km) |
重复观测周期/d | 1 |
波段范围/nm | 蓝:440~510 绿:510~590 红:600~670 全色:450~650 近红外:760~910 |
运行寿命/a | 7 |
图6 实验区R1中各波段辐射控制样本点散点图(本文方法)注:横纵坐标分别为目标影像T1和参考影像T2的像元值。 Fig. 6 The scatter plot of radiometric control set samples in region R1 (the proposed method) |
表2 基于PIF的各波段相对辐射校正方程(本文方法)Tab. 2 The relative radiation normalization equation of each band based on PIF (the proposed method) |
波段 | R1 | R2 | ||||||
---|---|---|---|---|---|---|---|---|
一元线性回归方程 | R2 | RMSE | 一元线性回归方程 | R2 | RMSE | |||
原始图像 | B1 | y=0.6978x+0.0685 | 0.4958 | 0.0131 | y=0.7654x+0.0530 | 0.5033 | 0.0119 | |
B2 | y=0.6133x+0.0774 | 0.4140 | 0.0163 | y=0.6533x+0.0670 | 0.3924 | 0.0162 | ||
B3 | y=0.6212x+0.0718 | 0.3818 | 0.0227 | y=0.6976x+0.0597 | 0.3334 | 0.0262 | ||
B4 | y=0.3412x+0.1846 | 0.1067 | 0.0419 | y=0.3629x+0.1941 | 0.1205 | 0.0398 | ||
PIF_initial | B1 | y=0.7740x+0.0499 | 0.8917 | 0.0066 | y=0.8233x+0.0377 | 0.8719 | 0.0065 | |
B2 | y=0.7542x+0.0487 | 0.8715 | 0.0079 | y=0.7685x+0.0419 | 0.8572 | 0.0077 | ||
B3 | y=0.7688x+0.0403 | 0.8378 | 0.0115 | y=0.8027x+0.0312 | 0.8194 | 0.0118 | ||
B4 | y=0.6207x+0.1148 | 0.3251 | 0.0370 | y=0.5447x+0.1404 | 0.2572 | 0.0369 | ||
PIF_select | B1 | y=0.7748x+0.0507 | 0.9540 | 0.0037 | y=0.8242x+0.0374 | 0.9562 | 0.0026 | |
B2 | y=0.7630x+0.0479 | 0.9624 | 0.0037 | y=0.7760x+0.0405 | 0.9529 | 0.0032 | ||
B3 | y=0.7724x+0.0415 | 0.9720 | 0.0041 | y=0.8073x+0.0304 | 0.9737 | 0.0032 | ||
B4 | y=0.7547x+0.0820 | 0.9267 | 0.0093 | y=0.6577x+0.1155 | 0.7884 | 0.0140 |
图10 实验区R1中各波段辐射控制样本点散点图(MAD和IR-MAD)注:横纵坐标分别为目标影像T1和参考影像T2的像元值。 Fig. 10 The scatter plot of radiometric control set samples in region R1 (MAD and IR-MAD) |
表3 基于PIF的各波段相对辐射校正方程(MAD和IR-MAD)Tab. 3 The relative radiation normalization equation of each band based on PIF (MAD and IR-MAD) |
波段 | R1 | R2 | ||||||
---|---|---|---|---|---|---|---|---|
一元线性回归方程 | R2 | RMSE | 一元线性回归方程 | R2 | RMSE | |||
PIF_MAD | B1 | y=0.6823x+0.0682 | 0.6434 | 0.0090 | y=0.7945x+0.0460 | 0.6680 | 0.0084 | |
B2 | y=0.5894x+0.0769 | 0.5655 | 0.0108 | y=0.6883x+0.0582 | 0.6028 | 0.0106 | ||
B3 | y=0.6092x+0.0676 | 0.5554 | 0.0148 | y=0.7523x+0.0454 | 0.6073 | 0.0156 | ||
B4 | y=0.3837x+0.1764 | 0.1169 | 0.0427 | y=0.4517x+0.1786 | 0.1575 | 0.0404 | ||
PIF_IR-MAD | B1 | y=0.7700x+0.0570 | 0.6549 | 0.0085 | y=0.8699x+0.0373 | 0.6342 | 0.0082 | |
B2 | y=0.6665x+0.0693 | 0.5500 | 0.0109 | y=0.7440x+0.0542 | 0.5060 | 0.0119 | ||
B3 | y=0.6839x+0.06264 | 0.4901 | 0.0164 | y=0.8381x+0.0412 | 0.4656 | 0.0198 | ||
B4 | y=0.4750x+0.1638 | 0.1871 | 0.0376 | y=0.5272x+0.1701 | 0.1990 | 0.0381 |
表4 基于PIF的各波段相对辐射校正方程(方法适用性验证)Tab. 4 The relative radiation normalization equation of each band based on PIF (method applicability validation) |
波段 | WorldView-2 | Landsat-8 OLI | |||||
---|---|---|---|---|---|---|---|
一元线性回归方程 | R2 | RMSE | 一元线性回归方程 | R2 | RMSE | ||
B1 | y=0.6550x-0.0076 | 0.8672 | 0.0050 | y=0.9660x+0.0033 | 0.9882 | 0.0017 | |
B2 | y=1.1694x-0.0186 | 0.8408 | 0.0096 | y=0.9457x+0.0046 | 0.9899 | 0.0018 | |
B3 | y=0.6819x-0.0054 | 0.9112 | 0.0057 | y=0.9534x+0.0054 | 0.9909 | 0.0024 | |
B4 | y=0.2154x+0.0845 | 0.8446 | 0.0135 | y=0.9391x+0.0015 | 0.9826 | 0.0070 |
[1] |
|
[2] |
|
[3] |
郭丽峰, 高小红, 亢健, 等. 伪不变特征法在遥感影像归一化处理中的应用[J]. 遥感技术与应用, 2009,24(5):588-595.
[
|
[4] |
|
[5] |
李德仁. 利用遥感影像进行变化检测[J]. 武汉大学学报·信息科学版, 2003,28(S1):7-12.
[
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
余晓敏, 邹勤. 多时相遥感影像辐射归一化方法综述[J]. 测绘与空间地理信息, 2012(6):8-12.
[
|
[11] |
黄启厅, 覃泽林, 曾志康. 多源多时相遥感影像相对辐射归一化方法研究[J]. 地球信息科学学报, 2016,18(5):606-614.
[
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
白洋. 基于核典型相关分析的遥感图像辐射归一化研究[D]. 北京:中国科学院大学, 2018.
[
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
陈小光, 封举富. Gabor滤波器的快速实现[J]. 自动化学报, 2007,33(5):456-461.
[
|
[33] |
|
[34] |
|
[35] |
|
/
〈 |
|
〉 |