模态框(Modal)标题

在这里添加一些文本

模态框(Modal)标题

  • Journal
  • Article
  • Figure
  • Search
EN中文
  • Home
  • About Journal
    • Overview
    • Indexing
    • Awards
  • Editorial Board
  • Guide for Authors
  • Editorial Policies
  • Subscription
  • Contact Us
EN中文

Figure/Table detail

MDSNet : A Multi-Scale Depth Supervision Method for High-Resolution Remote Sensing Image Semantic Segmentation
SHAN Huilin, WANG Xingtao, LIU Wenxing, WU Xinyue, GAO Runze, LI Hongxu
Journal of Geo-information Science, 2025, 27(6): 1381-1400.   DOI: 10.12082/dqxxkx.2025.250009

Fig. 8 Examples of ISPRS dataset
Other figure/table from this article
  • Fig. 1 The model structure of MDSNet
  • Fig. 2 Space De-redundant convolution module
  • Fig. 3 Feature expressiveness enhances visualization
  • Fig. 4 The structure of channel reweight concat
  • Fig. 5 The structure of ResT-Mamba
  • Fig. 6 The structure of multi-scale convolutional feature fusion module
  • Fig. 7 Multi-scale convolutional attention module
  • Tab. 1 Experimental configuration information
  • Fig. 9 Comparison of wavelet transform ablation experiments
  • Tab. 2 Quantitative results of different branch stems (Vaihingen) (%)
  • Tab. 3 The effect comparison test of each module (Vaihingen)
  • Fig. 10 Comparison of CRC ablation experiments
  • Tab. 4 Segmentation results under different network models on the Vaihingen dataset (%)
  • Fig. 11 Vaihingen data on the distribution of recall rates
  • Tab. 5 Segmentation results under different network models on the Potsdam dataset (%)
  • Fig. 12 Segmentation of low vegetation and trees in Potsdam
  • Fig. 13 Segmentation of Impervious surfaces and buildings in Potsdam
  • Fig. 14 Segmentation of Impervious surfaces and buildings in Potsdam
  • Fig. 15 Potsdam overall segmentation diagram

Website Copyright © Journal of Geo-information Science, All Rights Reserved.
Tel: 010-64889219,010-64888891 
E-mail: dqxxkx@igsnrr.ac.cn
Powered by Beijing Magtech Co. Ltd